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1. MOTIVATION



PROBLEM: Non-Destructive Testing of Built 
Infrastructure

• It has been widely established that there is a 
growing amount of aged, concrete infrastructure 
coming to end of life.

• However, current NDT techniques are limited in 
establishing high quality reconstructions of concrete 
interiors.

• A 2019 [1] study tested and compared NDT 
techniques:

- X-Ray laminography

- Ground penetrating radar (GPR)

- Ultrasound

- Muography
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What is Muography?

• Cosmic muons are produced from the interaction 
of high energy cosmic rays and atomic nuclei in 
the upper atmosphere.

• They are highly penetrating (~4GeV/c).

• However, a relatively low flux (1𝐜𝐦−𝟐𝐦𝐢𝐧−𝟏).

• Primary interaction is Coulomb scattering – 
common detectors are Emulsion Plates, gas 
detectors or scintillators.
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Limitations of Muography
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Muon Image        Ground Truth

Z
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1. Muon imaging time

-  Relies on a low natural muon flux.

- Multiple scattering makes it hard to model the muon path.

- Thus, requires high statistics - so images can take days to months to 
give reliable results.

2. Z-plane smearing

- Objects ‘smear’ in the direction perpendicular to the detector plane, 
creating shadows or artefacts.

- Limited angular acceptance (±30°) and inverse imaging problem 
greatly reduces z resolution.

3. Interpretability

- Produces somewhat noisy images.

- Can be difficult to consistently and accurately interpret.

𝜃



2. WHY USE MACHINE LEARNING?



• Convolutional filters are powerful tools for detecting patterns in data.

• They are localised, with typical receptive fields of 3x3 to 5x5 pixels.

• However, these are user-defined and limited to high level feature extraction, 
so cannot capture complex patterns.

Convolutional Pattern Recognition

Vertical Sobel Filter
−1 0 1
−2 0 2
−1 0 1

Horizontal Sobel Filter
−1 −2 −1
0 0 0
1 2 1

⨂

⨂
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• Instead of a user-defined kernel, convolutional 
neural networks (CNN’s) use a data-driven 
approach to optimise a kernel of learned 
parameters.

• These are then layered for abstract feature 
learning (deep learning), where features can be 
used to perform a given task.

Why Use Machine Learning? 
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Figure: Example of abstract feature learning across many learned convolutions

➢ Muon Imaging requires long exposure times to gather enough data for object resolution.

➢ Why? We're waiting for global pixelwise differences to exceed a threshold that allows human 

perception to identify objects.

➢ Key Question: Can we detect these differences before they become perceivable to the human eye?

Back to the problem at hand…



3. CURRENT WORK



• For a supervised task, we need inputs matched with ground truth 
labels.

• Due to the long sampling times, and volume of data required, we 
cannot rely on real data.

• We instead use muography data from physics simulations for ML 
model training. 

Creating a Dataset

Simulation Specs:

- Framework: Geant4 with Ecomug.

- Detector: Lynkeos Muon Imaging System (MIS).

- Block Dimensions: 1m x 1m x 0.2m.

- Sampling time: 100 days (14.4 × 106 muons/day).

- Image reconstruction using point of closest approach 

(PoCA).

7

Outlining the Problem Identifying a Solution Preliminary Results Future Work/Conclusions



Creating a Dataset
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• Dataset Diversity:

• Randomise number of objects

• Randomise placement.

• Randomise geometric characteristics of objects.

• Muon hits are gathered, scattering angles 

calculated, then volume is voxelised. 

Geometry Contents:

▪ 700 unique geometry 

configurations.

▪ Rebar Grids: 1-4 per volume, 

placed in XY plane.

▪ Tendon Ducts: 0-3 per 

volume, spanning along XZ or 

YZ planes.

▪ Air voids: 0-3 per volume, 

spherical.

▪ ‘Unknowns’: 0-2 per volume, 

random shape and density.
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Creating a Dataset

2D Image resolution (XY plane): 500x500 pixels, 2mm.

• Model Inputs:

- 100 image slices from each geometry.

- Each slice has 100 different versions with a different sampling 
rate (increments of 1 day).

- Input sampling rates are randomly sampled at each epoch for 
model generalisation.

• Image Upsampling Ground Truths:

- Use as a control to measure differences for sampling rates.

- Thus, choose highest available sampling rate: 100 days.

• Segmentation Ground Truths:

- Produced directly from the Geant4 geometries, sliced up to 
produce a ground truth for each geometry slice.

- One-hot encoded for model training.
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100 Day Sampling

1 Day Sampling 10 Day Sampling

Ground Truth Labels
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Task 1: Image to Image Upsampling
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Model:

▪ Conditional GAN architecture used – using a UNet with adversarial training.

▪ cWGAN-GP, architecture based on pix2pix [2] with ResNet6 [3] at the bottleneck.

▪ Optimiser: ADAM

▪ Loss functions: MAE (generator), Wasserstein loss (discriminator)

Reference Truth:
100 Day Sampling

Input:
1 Day Sampling

Output:
Upsampled Image
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1 Day
Muon Image

Upsampled 1 Day
Image

Ground Truth
100 Day Image

Task 1: Image to Image Upsampling
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Preliminary Results: Upsampling

Key Takeaways:

1. The model can take 1 days’ worth of 

data to produces an image that would 

otherwise take ~20 days.

2. At around 50-60 days, we see 

convergence.

➢ This metric doesn’t capture the full 

picture.

➢ We can break down the images by 

object type using segmentation.
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Structural Similarity Index 
Measure (SSIM) assesses:
• Luminance
• Contrast
• Structure
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Task 2: Image Segmentation

• Performed on the highest sampling (100-day data), for development.

• Utilises the ground truth geometries from our simulation setup.

• X-Y plane segmentation – no z-information.

• Labels: concrete, rebar, ducts, voids, unknowns.

• Model: Same as upsampling model but using Dice and cross-entropy losses.

Introduction/Motivation Machine Learning Theory Current Research Future WorkOutlining the Problem Identifying a Solution Preliminary Results Future Work/Conclusions

Input: 100 Day
Muon Image

Output:
Segmentation Map

Reference:
Ground Truth
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Preliminary Results: Segmentation

Lilac = Concrete
Blue = Rebar Grid 
Red = Tendon Duct
Yellow = Air Void

1 Day 5 Day

10 Day 20 Day

40 Day 60 Day

80 Day Ground Truth

• Instead of a high sampled muography ground truth, we use the actual geometry (from the simulation).

• We perform semantic segmentation to classify each pixel in the image.

Outlining the Problem Identifying a Solution Preliminary Results Future Work/Conclusions
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Preliminary Results: Segmentation
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• Inverse imaging problem means images get smeared in the z-direction.

• Since the model is using known geometries (without smearing), it has 

learned to distinguish between shadows and objects.

Lilac = Concrete
Blue = Rebar Grid 
Red = Tendon Duct
Yellow = Air Void

1 Day 5 Day

10 Day 20 Day

40 Day 60 Day

80 Day Ground Truth

• Segmentation significantly reduces shadowing/smearing effects.

𝜃
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Preliminary Results: Segmentation
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• Let's look at how upsampling changes our segmentation 

outputs:

Lilac = Concrete
Blue = Rebar Grid 
Red = Tendon Duct
Yellow = Air Void

1 Day 5 Day

10 Day 20 Day

40 Day 60 Day

80 Day Ground Truth

• Segmentation significantly reduces shadowing/smearing effects.

• Upsampling shows a significant accuracy increase for low sampling rates.
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Preliminary Results: Segmentation
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Rebar Grid 1:

▪ 25 mm Diameter

▪ z = 107 mm

Rebar Grid 2:

▪ 10 mm Diameter

▪ z = 152 mm Air Voids (diameter):

▪ 84 mm

▪ 47 mm

▪ 26 mm 

Duct 2:

▪ 100 mm Diameter

▪ z = 75mm

Duct 1:

▪ 80 mm Diameter

▪ z = 53 mm

Thin bottom rebar 

is almost non-

existent

Smallest void non-

existent

Patchy voids and 

artefacts Thick Rebar is almost perfectly 
reconstructed

Duct 2 has almost perfect 
reconstruction

Duct 1 is smeared 

downwards slightly

Ground Truth 100-Day 
Segmentation
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Preliminary Results: Upsampling and Segmentation

• Dice coefficient ranges from 0 (bad) to 1 (perfect).
• Above 0.7 is considered very good.
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• Good perception increase at low 

sampling rates.

• After ~20 days sampling, outputs 

worse than inputs

• Upsampler may be altering data 

distribution such that it is hindering the 

segmenter.

• Very high perception score, >70% 

for all sampling rates.

• Upsampling provides significant 

perception increase.

• Ducts are biased to edge 

placement and are large in size.

• Poor perception scores < 15%.

• Little difference with upsampling.

• Class contains lowest proportion of 

pixels, biasing it to not focus on 

upsampling these features.

• Harder feature to detect.

• Ok perception score, considering 

some small shapes and very low 

densities.

• Upsampling provides significant 

perception increase.

• Breakdown of density, size and shape 

would provide more insight.

Rebar Grids
 
 

Tendon Ducts
 
 

Air Voids 
 

‘Unknowns’
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Summary

Introduction/Motivation Machine Learning Theory Current Research Future Work
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Muon Imaging Problems:

1. Imaging time.

2. Z-plane smearing.

3. Interpretability.

Machine Learning Solution:

• Upsampling significantly reduces imaging time and reduces noisy 

effects.

• Segmentation significantly reduces smearing effects AND provides 

automatic interpretation of results.

• However, work to be done to improve accuracies.

Moving Forward:

• Test model performance for lower sampling times, < 1 day.

• Improving model accuracies: use 3D and hybrid conv-transformer 
architectures for larger context size.

• Test models on real datasets, informing future simulation design.

Input:
1 Day Sampling 
image

Output:
Upsampled & 
Segmented 
image

Step 1: Upsampling

Step 2: Segmentation

1 Day Upsampled and segmented: Data Pipeline:
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The Conditional GAN (cGAN)
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Generator
(U-net)

Input 
Image

Target 
Image

Generated 
Image

Task-Specific Loss

Total Generator Loss

• cGANs are the supervised version of the GAN (conditioned on an input).

• Contain two parts: generator and discriminator.

• Adversarial process: compete until Nash equilibrium is reached.

• The model used is heavily based on the pix2pix architecture [2].
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The Conditional GAN (cGAN)

Generator
(U-net)

Discriminator
(PatchGAN)

Input 
Image

Target 
Image

Generated 
Image

Discriminator LossTask-Specific Loss

Total Generator Loss Adversarial Loss
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• cGANs are the supervised version of the GAN (conditioned on an input).

• Contain two parts: generator and discriminator.

• Adversarial process: compete until Nash equilibrium is reached.

• The model used is heavily based on the pix2pix architecture [2].



Future Work
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2. Defect Segmentation Task

     Ultimate goal is to perform defect segmentation. Defects include:

➢ Rebar corrosion.

➢ Voids, honeycombing and cracks in concrete.

➢ Tendon duct: strand placement/corrosion, air spaces.

1. Model Optimisation

• Model is in early stages and requires development for reliable reconstruction of all materials.

• Move towards models that increase context size: global context, 3D context.

• Optimisation of method (do we upsample, then segment – or do we make one model for end-to-

end).

3.   Model Generalisation

• Assessing models on real datasets.

• Non-ideal object placement.

• Handling of different detector orientations.

• Handling of a variety of detector spacings.
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• Standard encoder-decoder CNNs are 
lossy – lose information.

• Introduce ‘skip connections’ between 
layers in the encoder and decoder.

• Allows for uncaptured, minor details to 
be preserved while keeping model 
complexity low.

• U-Nets are widely used for I2I translation 
tasks, especially in medical imaging.

U-Nets
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Z-dependence
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Z-dependence
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What is Muography?

• Absorption Radiography:  
▪ Uses muon attenuation (stopping).
▪ Two detector planes behind the object are 

required.

• Scattering Tomography: 
▪ Uses reconstructed scattering angles of 

muons.
▪ Two detector planes in front and behind the 

object are required.

• This has been successfully applied to:
• Nuclear waste characterization,
• Border control,
• Mining,
• (and others).

5
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CNN: Encoder-Decoder Architecture

ENHANCED
OUTPUT
IMAGE

INPUT
IMAGE

(64x64x1)

(64x64x16)

(32x32x16)

(32x32x32)

(16x16x32)

(16x16x64)

(8x8x64) (8x8x128) (4x4x128) (8x8x128) (8x8x64)

(16x16x64)

(16x16x32)

(32x32x32) (64x64x16)

(32x32x16) (64x64x1)

ENCODER DECODER

Convolution and activation 
function

Pooling Layer (2x2 window) Upsampling Layer
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• Convolution operations have been used 
for image processing for a long time.

• The feature extracted from an input 
image depends on the kernel.

• Convolution of the input with a kernel 
produces a feature map.

• Many different kernels can be performed, 
each looking for different features and 
each producing a feature map.

Convolutional Feature Extraction

= σ𝑖=1
3 σ𝑗=1

3
0 ∗ 1 0 ∗ 0 0 ∗ 1
0 ∗ 0 1 ∗ 1 2 ∗ 0
0 ∗ 1 2 ∗ 0 0 ∗ 1

 = 
0 0 0
0 1 0
0 0 0

 = 1
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• Example: Highlight vertical and horizontal features 
of this picture of Einstein.

Convolutional Feature Extraction [2]

Vertical Sobel Filter
−1 0 1
−2 0 2
−1 0 1

Horizontal Sobel Filter
−1 −2 −1
0 0 0
1 2 1

⨂

⨂
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• CNNs however learn the kernels they use – allowing for complex task-
specific learning.

• The learnable parameters in a CNN are the components of these kernels 
– each containing a set of weights (𝑤𝑖,𝑗) and a single bias term (𝑏):

 

 𝑂𝑖,𝑗 =  𝑤𝑖,𝑗 ×  𝐼𝑖,𝑗 + 𝑏 

Convolution in CNNs [1]

𝑤0,0 𝑤1,0 𝑤2,0

𝑤0,1 𝑤1,1 𝑤2,1

𝑤0,2 𝑤1,2 𝑤2,2

+ 𝑏

9 params for one 3x3 kernel

• 𝐼𝑖,𝑗  is the input (3x3 window of input)

• 𝑤𝑖,𝑗  are the weights of the 3x3 kernel

• 𝑏 is the bias term
• 𝑂𝑖,𝑗  is the 3x3 output of the element-wise product with bias.
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• As well as task-specific learning, CNNs also allow for complex hierarchical feature 
extraction using multiple layers.

– Top layers extract simple features such as edges.

– Deeper layers can extract complex features, combining information of the 
feature maps from the previous layer (e.g. boxes).

Convolution in CNNs [2]
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CNN: Encoder-Decoder Architecture

ENHANCED
OUTPUT
IMAGE

INPUT
IMAGE

(64x64x1)

(64x64x16)

(32x32x16)

(32x32x32)

(16x16x32)

(16x16x64)

(8x8x64) (8x8x128) (4x4x128) (8x8x128) (8x8x64)

(16x16x64)

(16x16x32)

(32x32x32) (64x64x16)

(32x32x16) (64x64x1)

ENCODER DECODER

Convolution and activation 
function

Pooling Layer (2x2 window) Upsampling Layer
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Convolutional Neural 
Networks (CNNs) [1]

Convolutional Layer:

• Primary Layer in a CNN.

• Used to extract and implement image features by 
using convolutional kernels.

• Kernel parameters converge to their final state 
over the course of training.

• Often on the order of 100’s of filters per layer - 
meaning even simple models have 105 - 106 total 
parameters to learn.
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• Model Methodology:

– Minimise complexity

– Minimise loss (maximise accuracy)

– Maximize generalisation

• Having a large, diverse dataset for the model to learn from 
is key to successfully training a generalised model.

• Unsuitable datasets are often the limiting factor when 
training a model.

• Datasets are randomly shuffled and split up into three 
parts:

• Training data

• Testing data 

• Validation data 

Training a Model [1]: Datasets
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• The training set is split into batches (batch size is dependent on the memory available 
during training).

• For each batch:

 1. Each sample is forward-propagated through the model to produce an output.

Training a Model [2]: Forward Propagation
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2. Outputs are compared to the ground truth labels using a loss function. 

 An average batch loss is calculated from all batch samples.

Training a Model [3]: Loss Calculation

Out 
1

GT 
1

Out 
2

GT 
2

Out 
3

GT 
3

Out 
128

GT 
128

Loss 
1

Loss 
2

Loss 
3

Loss 
128

𝐁𝐚𝐭𝐜𝐡 𝐋𝐨𝐬𝐬 =
1

128 ( )

• A loss function is a differentiable function that numerically compares the generated output and 

ground truth to measure the similarity. 

• One example is the mean-squared error (MSE) loss: MSE = 
1

𝑛
σ𝑖=1

𝑛 ( ො𝑦𝑖 −𝑦𝑖)2
-  𝑦𝑖 is the GT pixel value

-  ො𝑦𝑖 is the out pixel value

-  n is the number of pixels in       

the image

= Loss Function

46

-------------------------------------------------------------------------- BACKUP SLIDES --------------------------------------------------------------------------



3. The average loss is then backward-propagated 
through the model, calculating gradients of the loss 
w.r.t. the parameters of the model.

Training a Model [4]: Gradient Calculation

• For simplicity, consider a simple neural network with two nodes using 

MSE loss:

ℒ𝑀𝑆𝐸  =
1

𝑛
σ𝑖=1

𝑛 ( ෝ𝑦𝑖  −𝑦𝑖)2

- 𝑦 is the GT output value
-ෝ 𝑦 = w⋅x  is the predicted output value
- n is the number of items in each batch

w 

Input: 𝑥 Predicted Output: ( ො𝑦 = w⋅x ) 

𝜕ℒ

𝜕𝑤
 = 

𝜕ℒ

𝜕 ො𝑦
∙

𝜕 ො𝑦

𝜕𝑤

𝜕ℒ

𝜕𝑤
 = 2

𝑛
σ𝑖=1

𝑛 (w⋅𝑥𝑖 − 𝑦𝑖) ∙ 𝑥𝑖

• We first calculate the gradient of the loss ℒ with respect to the 

parameter of the model (𝑤). We do this using the chain rule:

Weight, w 

M
SE

 L
o

ss
, ℒ

(𝑤
) 

Optimal Weight Value

ℒ𝑀𝑆𝐸  =
1

𝑛
σ𝑖=1

𝑛 (w⋅𝑥𝑖  −𝑦𝑖)2

Example: minimising MSE loss wrt to weight
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4. An optimisation algorithm then calculates new 
parameter values based on the gradients. 

Training a Model [5]: Optimisation

• One of the simplest algorithms is gradient descent, 

which directly moves the weights towards the 

minimum.

• The negative gradient gives the direction towards the 

minimum, with a pre-defined parameter called the 

learning rate, 𝛼, determining the step size.

• The new weight, w*, is calculated by:

𝑤∗ = 𝑤 −  𝛼
1

2𝑛
෍

𝑖=1

𝑛

(𝑤𝑥𝑖 − 𝑦𝑖) ∙ 𝑥𝑖

Weight, w 

M
SE

 L
o

ss
, ℒ

(𝑤
) 

Example: minimising MSE loss wrt to weight

𝑤

𝑤∗

𝑤∗ = 𝑤 −  𝛼
𝜕ℒ

𝜕𝑤
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Training a Model [6]: Extending to >1 Layers

Input:

 𝑥𝑖

Predicted Output:

𝑎𝑖
𝐿 = ෝ𝑦𝑖= 𝑤𝐿⋅ 𝑎𝑖

𝐿−1
𝑎𝑖

𝐿−1= 𝑤𝐿−1⋅ 𝑎𝑖
𝐿−2

𝑎𝑖
𝐿−2= 𝑤𝐿−2⋅ 𝑎𝑖

𝐿−3𝑎𝑖
𝐿−3= 𝑤𝐿−2⋅ 𝑥𝑖

𝑤𝐿−3 𝑤𝐿−2 𝑤𝐿−1 𝑤𝐿

𝑤𝐿  = 𝑤𝐿  − 𝛼
𝜕ℒ

𝜕𝑤𝐿

𝑤𝐿  = 𝑤𝐿  − 𝛼
𝜕𝑎𝑖

𝐿

𝜕𝑤𝐿 ∙
𝜕ℒ

𝜕𝑎𝑖
𝐿

𝑤𝐿−1 = 𝑤𝐿−1 − 𝛼
𝜕ℒ

𝜕𝑤𝐿−1

𝑤𝐿−1 = 𝑤𝐿−1 − 𝛼
𝜕𝑎𝑖

𝐿−1

𝜕𝑤𝐿−1 ∙
𝜕ℒ

𝜕𝑎𝑖
𝐿−1

𝑤𝐿−1 = 𝑤𝐿−1 − 𝛼
𝜕𝑎𝑖

𝐿−1

𝜕𝑤𝐿−1 ∙
𝜕𝑎𝑖

𝐿

𝜕𝑎𝑖
𝐿−1 ∙

𝜕ℒ

𝜕𝑎𝑖
𝐿

𝑤𝐿−2 = 𝑤𝐿−2 −  𝛼
𝜕ℒ

𝜕𝑤𝐿−2 

𝑤𝐿−2 = 𝑤𝐿−2 −  𝛼
𝜕𝑎𝑖

𝐿−2

𝜕𝑤𝐿−2 ∙
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𝜕𝑎𝑖
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𝜕𝑎𝑖
𝐿
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𝐿−1 ∙

𝜕ℒ

𝜕𝑎𝑖
𝐿

ℒ𝑀𝑆𝐸 = 
1

𝑛
σ𝑖=1

𝑛 ( ෝ𝑦𝑖  −𝑦𝑖)2

ℒ𝑀𝑆𝐸 = 
1

𝑛
σ𝑖=1

𝑛 (𝑤𝐿⋅ 𝑎𝑖
𝐿−1 −𝑦𝑖)2

𝜕ℒ

𝜕𝑎𝑖
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2

𝑛
σ𝑖=1

𝑛 (𝑤𝐿⋅ 𝑎𝑖
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𝜕𝑎𝑖
𝐿−3
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𝜕𝑎𝑖

𝐿−3
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𝜕𝑎𝑖

𝐿−2

𝜕𝑎𝑖
𝐿−3 ∙

𝜕𝑎𝑖
𝐿−1

𝜕𝑎𝑖
𝐿−2 ∙

𝜕𝑎𝑖
𝐿

𝜕𝑎𝑖
𝐿−1 ∙

𝜕ℒ

𝜕𝑎𝑖
𝐿 = 𝑤𝐿−3 −  𝛼 σ𝑖=1

𝑛 [𝑥𝑖⋅ 𝑤𝐿−2 ∙  𝑤𝐿−1 ∙ 𝑤𝐿 ∙
2

𝑛
(𝑤𝐿⋅ 𝑎𝑖

𝐿−1 − 𝑦𝑖)] 

     

Generated 
Output

Label

Batch Size

Learning 
Rate

Input

Red = Layer outputs obtained from forward propagation
Blue = Old weights 
Green = New weights
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Model Evaluation [1]: Training Loss

5. Each pass of the full training dataset (all batches) is 
called an epoch. Models are often run for hundreds of 
epochs for optimal accuracy.

• Training the model over many 
epochs allows more time for the 
model parameters to converge 
towards their minima.

• We can evaluate the model over its 
training by calculating the loss and 
any other metrics at the end of each 
epoch.
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5. Each pass of the full training dataset (all batches) is 
called an epoch. Models are often run for hundreds of 
epochs for optimal accuracy.
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• Training the model over many 
epochs allows more time for the 
model parameters to converge 
towards their minima.

• We can evaluate the model over its 
training by calculating the loss and 
any other metrics at the end of each 
epoch.
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• We can evaluate the model over its 
training by calculating the loss and 
any other metrics at the end of each 
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• Training the model over many 
epochs allows more time for the 
model parameters to converge 
towards their minima.

• We can evaluate the model over its 
training by calculating the loss and 
any other metrics at the end of each 
epoch.
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• Many iterations over the training 
data may lead to ‘overtraining’.

• This is where the model does not 
generalise well to unseen data.

• We can evaluate model 
generalisation at the end of each 
epoch, using the unseen validation 
dataset.

• The trained model is finally 
evaluated using the test dataset.

Model Evaluation [2]: Validation Loss

Overfit Data

Well-fit Data
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• Overfitting often means that the model is too 
complex as it learns the training data too well.

• However, models require a high complexity to 
learn hierarchical features.

• Therefore, the model is penalised during 
training, called regularisation.

• This involves:

• Dropout

• Batch Normalisation 

• Early stopping

• Training Data augmentation

Model Regularisation
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Model Training

• Training data is split into batches.

• For each batch:

• Forward passed to generate outputs.

• Average batch loss calculated.

• Backpropagation: gradients calculated.

• New parameters updated using gradients and 
optimiser

• A run of all batches is an epoch.

• Validation and training losses are used to evaluate 
the model after each epoch.

• The final model is evaluated on the test data.

Summary of Machine Learning for I2I Translation

CNN Architecture

• Layered convolutions are used for hierarchical 
feature extraction.

• Activations are used to introduce non-linearity, 
reduce complexity and improve learning.

• Pooling is used to reduce resolution.

• Upsampling is used to increase resolution back up, 
with learned features implemented with more 
convolutions.

• Regularisation is used to penalise the model and 
ensure the model generalises well to unseen data.

• U-net and CGAN architectures are good for I2I tasks.
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