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Shape of nuclei

4

-Spherical ground state configurations are energetically favorable in nuclei near shell closures.

-Modifying the nucleon number of a doubly closed-shell nuclei will increase the deformation of the ground state until the
midshell, where deformation is maximal.

-Excited states can display different configurations from ground states.
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4

Low energy shape coexistence

-Regions where one type of nucleon lies near a shell closure and the other near midshell lead to competition between
spherical and deformed shapes (e.g., Z =82, N = 104).

-Different configurations are said to coexist within a single nuclei.

-Spherical and deformed configuration can be separated by only a few hundred KeV. (}8¢Pb)
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Low energy shape coexistence

4

-Regions where one type of nucleon lies near a shell closure and the other near midshell lead to competition between
spherical and deformed shapes (e.g., Z=82, N = 104).

-Different configurations are said to coexist within a single nuclei.

-Spherical and deformed configuration can be separated by only a few hundred KeV. (}8¢Pb)
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Low energy shape coexistence
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Low energy shape coexistenc

-Describing this behavior in a consistent manner is a big

challenge for theory.

-To constrain our models, experimental data on these structures

is required.

-Some of the first evidence of shape coexistence came from
laser spectroscopy in the region of Z=82 and N=104.
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Low energy shape coexistence

-Alpha decay 84TI->180Ay.

-Beta decay 80Hg->180Au.
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The time for decay spectroscopy

4

-Whilst laser spectroscopy has been successful in displaying hints of shape coexistence, it is limited in what it can show.
-Different decay channels will populate different states. (Alpha vs Beta)
-Two major previous studies of the low-lying structure of 18%Au were conducted.

-Beta-gamma decay study in 1977

-Alpha-gamma study in 2016

-Different selection rules of decay processes allow complementary studies.
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Decay spectroscopy at the ISOLDE facility
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Rare isotope beam production at ISOLDE
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Windmill versus ISOLDE Decay station

Plastic scintillators have
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Mylar tape is cycled to decay
position to reduce daughter
products build up and study
daughters with 2 Ge Clovers.
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Alpha decay (34TI->180Au)

-Reanalysis of previous alpha data revealed new gamma T
transitions. TR s S . _
-Lack of ground state to ground state alpha decays indicates T
strong hinderance and large difference in structure. - 3 2
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Difficulties with beta decay (13°Hg->180Au)

-Allowed Gamow-Teller beta decay (0*->1*)

-Ground state to ground state will be a common transition i.e
no gamma rays.

-Small Q¢ of 5.4 MeV compared to neighboring nuclei.

-A large number of Compton scatters.

-Daughter product build-up cause gamma-ray energies to
appear to shift.

-Many weak and low energy transitions exist, so multiple
techniques will need to be used.

180Hg 0* Spherical G.S

High spin excited state

Low spin excited state

180Au 1* Deformed G.S
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180Au via beta decay

1085
-We have been able to produce the following decay scheme
based on both the previous and our own study. 858
-We have identified peaks from previous study, as well as some
new peaks. >73 3c,
-We see no population of high-E states, and no high-E gamma
rays, so far. (Qg=5375 keV) 450
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Combined Decay Scheme

-Combine data, displays states which can be populated by both 1085
alpha and beta decay, as well as those that can not.
-This can be used to show evidence or lack of evidence of 858
coexisting structure inside the low lying structure and can in 579
turn give a suggestion of shape coexistence beyond the N=104
midshell. 450
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Summary and outlook

We have been able to produce more '8Hg, than previously due
to upgrade techniques since the original studies.

-We have been able to reveal low-lying levels of 8Au, and
construct an initial decay scheme.

-Work to do
-Place remaining gamma rays.
-Calculate ground state feeding.
-Assignments of multipolarities of gamma rays.
-Compare with data from other nuclides.
-Ponder over the lack of high energy gamma rays and
other expected features.
-Understand whether we see the shape coexistence,
we were promised from laser spec.
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Shape Coexistence

* Shape coexistence is defined as the occurrence within a single atomic nucleus of multiple low-lying quantum states that are characterized
by significantly different intrinsic shapes, existing at similar excitation energies.

* The microscopic origin of shape coexistence can be justified from the spherical shell model by excitation of nucleons across energy gaps
associated with shell or sub-shell.

* Promoting one or more pairs of nucleons (protons or neutrons) from orbitals below a shell gap to orbitals above it creates multi-particle-
multi-hole (e.g., 2p-2h, 4p-4h) configurations relative to the normal, ground-state configuration (often considered Op-0h).

* These excited configurations are our "intruder states".
* If the gain in energy is comparable to the shell gap, multiple competing shapes can coexist.

* The energy required to form this np-nh excitation, can be offset by a gain in correlation energy from quadrupole-quadrupole valence
nucleon interactions, which drive deformation and thus a deformed shape.

* The excitation energy of intruding states tends to follow a parabolic shape, with a centroid at the mid-shell.
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How to investigate shape coexistence with different techniques

In-beam y-ray spectroscopy can investigate rotational bands, and high-spin structures.

B-decay can selectively populate the low-spin states, beta-feeding to daughters and logft values can provide
help with structural assignments.

Laser spectroscopy can observed relative changes in nuclear charge distribution between isotopes.

a-decay can investigate fine structure probing energy levels of band-heads especially for 0* states, as well as
reduced widths and hinderance being sensitive probes for changes in nuclear configuration and deformation
between parent and daughters .

Coulex can investigate the collectivity of transitions in low-spin states.
Lifetime measurements can reveal transition rates and help characterize states.

Conversion electrons studies especially in conjunction with in-beam studies can reveal EO transitions from
bandheads.

Laser spectroscopy can identify the existence of isomers, arising from proton-neutron coupling due to
intruder orbitals, this in conjunction with alpha decay will constrain the allowed configurations and shapes.



Previous even mass studies in this region

* Similar studies have been performed with neighbouring nuclei 172Au and 182Au, as well as ¥*Au which may have a
similar excitation energy due to parabolic shape and this has been used in past to find connections between certain
nuclei.

* 0dd-odd nuclei posses both two unpaired nucleons, coupling between these leads to a higher density of low-lying
states, as they are sensitive to single-particle configurations and deformation.
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Previous studies of neighboring odd mass nuclei

* Similar studies have been performed with neighbouring nuclei 1”?Au and 81Au.

* The study of the neighboring odd-A nuclei is method by which single-particle states present can be identified
suggests the neutron-proton configurations.

e Studies of neighboring odd-A Au isotopes have already established the presence of coexisting structures, often
involving competition between low-j proton hole states (e.g., ms1/2, ntd3/2) and high-j intruder particle states (e.g.,
nth9/2, mi13/2).

* A prolate band built on the mh9/2, while oblate structure have been built on nano second isomers in this region.

* The mth11/2 states remain almost constant in energy, these are believed to be the result of p-h states coupled to 7%
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Shape Coexistence (Lead region)

8(r?) (fm?)

The midshell lead region has been one of the most successful regions of the chart for exploring low
energy shape coexistence.

The first evidence coming from hyperfine structure measures of Hg, which showed large variations
between odd and even mass nuclei.

The lead isotopes have displayed shape coexistence with multiple low-lying excited 0 states, occurring
in species near the mid-shell, which have been accompanied with the studied of EO transitions
between.

Radioactive decay between even mass Hg to Pt nuclides have displayed a large hinderance factor
which suggest a great change in the 0" states.

Alpha decay has indicated that a strongly deformed ground state may exist within Po isotopes, which
does not exist in higher Z isotopes.
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Shape Coexistence- Odd-odd case

8(r*) (fm?)

Shape coexistence has been a constant challenge for nuclear theory.

Modern DFT, and shell model calculation work very well for most even-even nuclei in the Z=82, N=104 region.

Odd-A, and especially odd-odd nuclei are a major challenge for our nuclear theories.

Begin by selecting states with correct spins, and calculating ground states.

Theory predicts odd-even staggering for Au, experiment does not.

For most nuclear theory, a lack of experimental data hampers the models ability to predict.

J.G. Cubiss et al., Phys. Rev. Lett. 131, 202501 (2023)
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Shape Coexistence- Pb region
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Other Deformation

* An extension of the purely axial symmetric deformation discussed is 60°
the idea of triaxial deformation introducing a new parameter
gamma, by the rigid triaxial rotor model of Davydov and Filippov.

Oblate

* Spherical Shape: (3,=0.
* Prolate Shape: 3,>0, y=0o.

* Oblate Shape: 3,>0, y=600. Previously represented as 3,<0
with y=00).

0 0.2 0.4

* Triaxial Shape: 3,>0, 0o<y<600. Lacks axial symmetry. "

Spherical
* Triaxial deformation has been suggested as a feature in this B
region of the chart adding additional triaxial bands 18°Os.

prolate

* Octupolar deformation and other higher order effects may
also play a role in shape coexistence in this region.



Resonance ionization spectroscopy (RIS)

RIS, is a technique used to liberate isotopes from the target and transfer line.

All chemical elements have a unique energy level scheme, which can be excited in a unique way using a laser.
Multiple lasers can be used to excite in a stepwise manner to liberate a valence electron from the element of interest.
lonization is maximize by saturating the atomic transitions.

At ISOLDE this is performed by the RILIS experiment.

The selectivity of RILIS is achieve by multiple excitation of valence electrons in an element specific way.

The atomic transitions are saturated.

lonization can occur via an autoionizing state, which is a prefer pathway due to a higher efficiency compare to
alternatives.

RILIS covers a wide range of wavelengths from UV to IR, which in turn allows the ionization of nearly all naturally
occurring elements.

y N
532 nm
84184.1 cm”. .
————————————— loniz
71333.053 ¢ 54196526
= — pre
1 2
313.28
nm
39412.237 cm” 5d1%s26p

1 /

253.73
nm

0cm

3po
PJ

5d16s?_ 15,

Hg



The Windmill detector

The windmill detector was a set-up used to look at the decay spectroscopy of nuclides at ISOLDE.
The Windmill detector consists of a rotating wheel containing 10 thin carbon foils (20 pg/cm2 ).

A RIB passes through the hole in an annular silicon detector and is impinged on the target and implants, since the foils are thin, alpha particles
can escape.

Escaping alphas will be detected by silicon detectors placed in front of and behind the foils with a germanium detector located near to catch
gamma rays.

Once enough contamination has built up or a new isotope of interest is looked at, the wheel is rotated and process repeated.

Si detector
_Si Annular Si
Annular Si getector detecto
— detector
- 20ug cm2
carbon foil
30 keV
184T beam

20pug cm-
2 carbon
foil
30 keV 18471
beam
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Laser spectroscopy-charge radii, isotope shift, and moments

Laser spectroscopy is a key tool for mapping evolving structures of ground states and isomers.
Laser spectroscopy is used to measure the hyperfine structure of nuclei along isotopic chains.

A key measurement is the isotopic shift, the energy required for a specific atomic transition is observed to shift between different isotopes of
the same element.

Laser spectroscopy can determine the spin, and moments of nuclei in a model independent way.
The mean-squared charge radii is of fundamental importance to nuclear structure, defining the extent of a nuclei.
The change in mean-squared charge radius between different isotopes can be extracted from experimental measurements of the isotope shift.

These shifts, result from the change in mass and size between isotopes, equally they can also have changes between the same isotope, but
different states known as isomeric shifts.

Charge radii and electromagnetic moments of exotic nuclei provide important information on their deformation and underlying nuclear
structure and this can be extracted from laser spectroscopy data.
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