

β^- decay of ⁹²Rb **Reactor Antineutrino Anomaly** and Pygmy Dipole Resonance

Pietro Spagnoletti

University of Liverpool

IOP Nuclear Physics Conference

April 24th, 2025

SFU UWS & TRIUMF

UNIVERSITY OF THE WEST of SCOTLAND

IOP Nuclear Physics 2025

Reactor Antineutrino Anomaly

- Flux measurements disagree with improved theory calc.
 - Daya Bay, Double Chooz, RENO
 - Huber-Muller Model (2011)
- $\sim 6\%$ of neutrinos missing
- Excess of neutrinos at 5-7 MeV
- Summation Method
 - Alternative approach to H-M model
 - Sums all β -branches to calculate neutrino spectrum
 - Requires reliable eta-decay data

Total Absorption Spectroscopy

- Utilizes large volume scintillator detectors.
 - Calorimeter.
- Exploits high detection efficiency.
 - Free from *pandemonium*.
- Poor energy resolution.
- Limited sensitivity individual levels.
- Limited probe of nuclear structure!

$^{\rm 92}{\rm Rb}\,\beta$ decay

- $^{92}{\rm Rb}$ is a main contributor of high-energy $\bar{v_e}$
- High-Resolution Spectroscopy (HRS)
 - Early generation Ge detectors (1972)
 - Pandemonium effect
 - Missing β strength
 - \rightarrow incorrect predictions for \bar{v}_e
- Total Absorption Spectroscopy
 - Alternative approach
 - Provides reliable β -feeding data
 - Impacts reactor decay heat calc.

β decay and Pygmy **Dipole Resonance**

- Resonance-like structure of 1^{-} levels ٠ situated low energy tail of the Giant Dipole Resonance.
 - Neutron-rich nuclei
- Exhausts few % of E1 strength of the ٠ EWSR.
- Split into Isoscalar and Isovector ٠ components.
- Impacts. ٠
 - Nucleosynthesis.
 - Nuclear Equation of State.

 $\begin{array}{c} \text{Relative abundances}\\ 10^{-2} \text{ for a spin dances}\\ 10^{-30} \text{ for a spin dances}\\ 10^{-4} \text{ for a spin dances}\\$

10-5

10-6

- Neutron stars.
- β offers alternative probe of PDR states.

Probes for PDR

- Nuclear Resonance Fluorescence is the workhorse of PDR studies
 - Excellent excitation of $\mathbf{1}^-$ levels.
 - Direct measurement of B(E1) values.
 - Only suitable for stable nuclei.
 - ⁹²Sr is not [T_{1/2} = 2.66(4) h].
 - Preferentially excites 1p-1h states.
- ⁹²Rb: $J^{\pi} = 0^{-}$, $Q_{\beta} = 8096$ keV.
- Transitions to 92 Sr (S_n = 7.3 MeV)
 - Allowed to 0^- and $\mathbf{1}^-$
 - First Forbidden to 0^+ , 1^+ and 2^+

Scheck et al. Phys. Rev. Lett 116, 132501 (2016)

Experiment

- Performed at ISAC, TRIUMF
- 480 MeV protons on UC_x target.
 - ⁹²Rb from Surface Ion Source
 - Yield: $\sim 10^9 \text{ pps}$

• Delivered to GRIFFIN

- $\sim 10^6$ pps for ~ 10 hours
- 15 HPGe Clover detectors
 - Anti-Compton shielding
- ZDS: β-tagging
- PACES: Conversion electron
- LaBr₃(Ce): Fast-timing

IOP Nuclear Physics 2025

Results

- $\sim 1.6 \times 10^{11}$ decays occurred
 - Massive data set
 - Many, many, many γ rays
- Analysis
 - γ -ray singles
 - γ - γ and γ - γ - γ coincidences.
 - γ - $\gamma(\theta)$ angular correlations

Counts per keV

- Identify γ rays below 0.01% intensity
 - Relative to strongest transition

Pietro Spagnoletti

⁹²Sr Levels

- Early β -decay studies from late 70s/early 80s.
 - 17 excited states.
 - ~ 50 γ -ray transitions.
- GRIFFIN
 - ~190 excited states populated!
 - Many levels in the PDR.
 - Strongly fragmented γ -decay strength.
 - ~ 864 γ -ray transitions!

Pandemonium

- Misplaced β -feeding originates from unobserved or misplaced γ rays.
- Lots of weak transitions can add up.
- 6030-keV Level
 - ENSDF: 3 transitions
 - GRIFFIN: 40 transitions
 - Missing transitions 54% I_{β}

 BR_{-}

0.90(10)

2.5(3)

1.1(2)

3.7(3)

3.1(3)

0.48(7)

0.6(8)

0.80(10)

0.50(10)

3.8(4)

0.57(8)

1.2(2)

1.8(3)

1.5(3)

9.2(8)

0.5(1)

2.4(4)

2.8(2)

2.9(5)

6(5)

5.1(6)

19.3(14)

2.3(3)

9.3(11)

9(9)

58(6)

8.3(6)

13.2(9)

11.0(10)

2.2(3)

1.42(19)

4.4(4)

47(3)

6.3(5)

20.7(16)

4.2(3)

4.3(5)

9.4(8)

100(8)

54(6)

IOP Nuclear Physics 2025

- Reactor Antineutrino experiments have played a pivotal role in neutrino physics.
- Reliable β -decay data is essential for future reactor experiments and to improve decay-heat calculations.
- State-of-the-art HPGe arrays can suppress Pandemonium to obtain results consistent with TAS.
 - Excellent agreement despite
 - High-level density.
 - Fragmented γ-decay.
 - Provides highly complementary data.
- ⁹²Rb decay is examined in unparalleled detail.
 - 190 levels populated + 864 γ -ray transitions observed.
 - Many 1^- levels in PDR region populated.
 - β decay offers alternative probe for PDR studies!

Exploring the origin of the reactor antineutrino anomaly: high-resolution β -decay study of 92 Rb

P. Spagnoletti,¹ M. Ramalho,² S. Tähtelä,² E. Kauppinen,² J. Suhonen,^{2,3} C. Andreoiu,¹ M. Scheck,⁴ Z. Ahmed,⁵ D. Annen,¹ G.C. Ball,⁶ G. Benzoni,⁷ S.S. Bhattacharjee,⁶ H. Bidaman,⁵ V. Bildstein,⁵ S. Buck,⁵ R. Caballero-Folch,⁶ R.J. Coleman,⁵ S. Devinyak,⁵ I. Dillman,⁶ I Dijanto,¹ F.H. Garcia,⁸ A.B. Garnsworthy,⁶ P.E. Garrett,⁵ B. Greaves,⁵ C. Griffin,⁶ G.F. Grinver,⁹ E.G. Fuakve,⁹ G. Hackman,⁶ D. Hymers,⁵ D. Kalavdijeva,¹⁰ R. Kanungo,¹¹ K. Kapoor,⁹ E. Kasanda,⁵ W. Korten,¹⁰ N. Marchini,¹² K. Mashtakov,⁵ A. Nannini,¹² K. Ortner,¹ B. Olaizola,¹³ C. Natzke,⁶ C.M. Petrache,¹⁰ M. Polettini,¹² A. Radich,⁵ M. Rocchini,⁵ N. Saei,⁹ M. Satrazani,¹⁴ M. Siciliano,¹⁵ M. Singh,¹¹ C.E. Svensson,⁵ D.A. Torres,¹⁶ R. Umashankar,⁶ V. Vedia,⁶ E. Wadge,¹ T. Zidar,⁵ and M. Zielińska¹⁰ ¹Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ²Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland ³International Centre for Advanced Training and Research in Physics (CIFRA). P.O. Box MG12, 077125 Bucharest-Magurele, Romania ⁴School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom ⁵Department of Physics, University of Guelph, Guelph N1G 2W1 Ontario, Canada ⁶TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada ⁷INFN Sezione di Milano, IT-20133 Milano, Italy ⁸Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁹Department of Physics, University of Regina, S4S 0A2 Regina, Canada ¹⁰IRFU/DPhN, CEA Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ¹¹Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada ¹²INFN Sezione di Firenze, IT-50019 Firenze, Italy ¹³CERN, CH-1211 Geneva, Switzerland ¹⁴Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom ¹⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ¹⁶Departamento de Física. Universidad Nacional de Colombia, Bogotá, Colombia

Pietro Spagnoletti

