

Meson Spectroscopy at Jefferson Lab

Charlie Velasquez (charlie.velasquez@york.ac.uk)

Experimental Meson Spectrum

Meson	M (Exp)
$\pi^+[u\overline{d}]_{J^{pc}=0^{-+}}$	139.57039 ± 0.00018
$\pi^{-}[d\overline{u}]_{J^{pc}=0^{-+}}$	139.57039 ± 0.00018
$\pi^0[(u\overline{u}-d\overline{d})/\sqrt{2}]_{J^{pc}=0^{-+}}$	134.9768 ± 0.0005
$\rho^+[u\overline{d}]_{J^{pc}=1^{}}$	775.4 ± 0.4
$\rho^{-}[d\overline{u}]_{J^{pc}=1^{}}$	775.4 ± 0.4
$\rho^0[(u\overline{u}-d\overline{d})/\sqrt{2}]_{J^{pc}=1^{}}$	775.26 ± 0.23
$\omega[(u\overline{u}+d\overline{d})/\sqrt{2}]_{J^{pc}=1^{}}$	782.66 ± 0.13
$K^+[u\overline{s}]_{J^{pc}=0^{-+}}$	493.677 ± 0.016
$K^{-}[s\overline{u}]_{J^{pc}=0^{-+}}$	493.677 ± 0.016
$K^0[d\overline{s}]_{J^{pc}=0^{-+}}$	497.611 ± 0.013
$\overline{K}^0[s\overline{d}]_{J^{pc}=0^{-+}}$	497.611 ± 0.013
$K^{*+}[u\overline{s}]_{J^{pc}=1^{}}$	891.67 ± 0.026
$K^{*-}[s\overline{u}]_{J^{pc}=1^{}}$	891.67 ± 0.026
$K^{*0}[d\overline{s}]_{J^{pc}=1^{}}$	896.00 ± 0.025
$\overline{K}^{*0}[s\overline{d}]_{J^{pc}=1^{}}$	896.00 ± 0.025

J = L + S $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Lattice QCD Meson Spectrum

https://arxiv.org/pdf/1909.06366

3

Meson spectroscopy objectives:

- Accurately determine properties of mesons
- Understand meson production and decay mechanisms
- Classify mesons
- Expand spectrum of known mesons
- Test predictions of lattice QCD
- Discover exotic mesons

The November Revolution 1974

50 years on

 $X \to K^0_s K^0_s \eta'$

Partial Waves

T_l are the amplitudes which correspond to the proportion of eigenstate with angular momentum l in the final state, these amplitudes are known as the partial waves

Partial Waves

Allowed X states:

$$\hat{S}_1 = \hat{S}_2 = 0, L = 0, 1, 2, \dots$$
$$J = L \quad P = C = -1^L$$
$$J^{PC} = 0^{++}, 1^{--}, 2^{++}, \dots$$

For l = 2, the cross-section becomes,

$$\frac{d\sigma}{d\phi dcos\theta} \propto T_0^2 P_0^2 + T_1^2 P_1^2 + T_2^2 P_2^2 + 2T_0 T_1 P_0 P_1 + 2T_1 T_2 P_1 P_2 + 2T_0 T_2 P_0 P_2$$

Reaction of Interest

- Polarisation is a fundamental property of the photon
- Understand role of polarisation in meson photoproduction

Reaction of Interest

Reaction of interest: $ep \to ep'K^+K^-$

- Photon (quasi-real) transfers momentum
- High degree of linear polarisation (P_v>70%)
- Pomeron exchange, access to various X quantum numbers

Reaction of Interest

Reaction of interest: $ep \rightarrow ep'K^+K^-$

Cross-section:

 $\frac{d\sigma}{dtdm_{KK}d\Omega d\Phi} \propto P_{\gamma} X \left| \sum_{l=0}^{l_{max}} T_m^l Y_l^m(\Omega) \right|^2$

Allowed X states:

 $J^{PC} = 0^{++}, 1^{--}, 2^{++}, \dots$

Jefferson Laboratory

- Multi-GeV electron
 beam
- High luminosity beam
- Spin polarised beam
- Four experimental halls

CLAS12

- Located in hall B
- Determination of 4-momenta of particles
- 2.5° to 125° acceptance

Experimental Data

Data was obtained under the following conditions:

- 10.2 Gev per electron
- Liquid hydrogen target

Obtaining events corresponding to the reaction of interest required:

- Event selection
- Reaction reconstruction

Event selection

Conditions:

- Topology: epK⁺K⁻
- $\Delta t = |TOF_{FTOF} TOF_{DC}| < 0.3 \text{ ns}$
- Scattered electron:
 - Forward Tagger
 - 0.4 < E < 5 GeV
- Kaons: Forward Detector

Reaction reconstruction

Missing mass squared of the event:

$$MM^{2}(ep \to e'pK^{+}K^{-}X) = |P_{b} + P_{t}|^{2} - |P_{e'} + P_{p} + P_{K^{+}} + P_{K^{-}}|^{2}$$

Reaction reconstruction

Missing mass of the kaons:

$$MM(ep \to e'pK^{\pm}X) = \sqrt{(|P_b + P_t|^2 - |P_{e'} + P_p + P_{K^{\pm}}|^2)}$$

Missing Mass

19

Missing Mass

20

Simulations

Simulated data workflow:

- Created using Monte-Carlo event generator
- Passed through GEANT4 model of the detector
- Acceptances and efficiencies calculated
- Same event selection and reaction reconstruction was applied

Angular distributions in the Gottfried-Jackson frame were obtained.

Angular distributions in the Gottfried-Jackson frame were obtained.

Angular distributions in the Gottfried-Jackson frame were obtained.

Gottfried-Jackson angular distributions and polarisation for experimental data.

Extracting Partial Waves

Partial waves were calculated using event-by-event maximum likelihood fitting and partial waves were acceptance- corrected.

Data were split into 40 K⁺K⁻ invariant mass bins between 1.0 and 2.5 GeV. The partial waves were calculated independently in each bin.

Extracting Partial Waves

Polarisation and angular distributions for experimental (black) and projection of fit for each variable (red).

Results

Outlook

Topics of future research:

- Improve accuracy of simulated data
- Systematic studies on all reaction reconstruction conditions
- Implementation of background removal
- Study of other reactions such as $ep \rightarrow ep' K^+ K^- \pi^0$

Thank you for listening

Charlie Velasquez (charlie.velasquez@york.ac.uk)

CLAS12

Micromegas gas tracker - determines vertex, momentum

Calorimeter determines energy

M

 p_p - particle momentum P_L - particle path length t_p - flight time over P_L

Missing mass

The missing mass squared of the reaction is given by:

$$MM^{2}(ep \to e'pK^{+}K^{-}X) = |P_{b} + P_{t}|^{2} - |P_{e'} + P_{p} + P_{K^{+}} + P_{K^{-}}|^{2}$$
$$= (E_{b} + m_{t} - E_{e'} - E_{p} - E_{K^{+}} - E_{K^{-}})^{2}$$
$$- |\bar{p}_{b} + \bar{p}'_{e} - \bar{p}_{p} - \bar{p}_{K^{+}} - \bar{p}_{K^{-}}|^{2}$$

Missing mass

An example:

Missing mass

The K⁺ missing mass is given by:

Angular distributions in the Gottfried-jackson frame were obtained.

