Isomer spectroscopy of ²⁵⁰Fm

Jamie Chadderton Department of Physics, University of Liverpool j.chadderton@liverpool.ac.uk IOP Nuclear Physics Conference, Manchester 2025

B. Carta

in materia, en ertrater bet bene gent i bere

Introduction

Superheavy elements and the island of stability K-Isomerism 250 Fm – previous work

Experiment and simulation SAGE spectrometer S20 Experiment

Results

 $K^{\pi} = 8^{-}$ isomer Simulations

Why transfermium nuclei?

• Probe SP levels brought down by deformation from around shell gap, in lighter, deformed systems.

 Evidence for enhanced stability against α decay and fission. E.g. ²⁷⁰Ds. RM Clark. *The European Physical Journal Special Topics*, pages 1–9, 2024.

K-Isomerism

Above the $K^{\pi} = 8^{-}$ isomer

• $B(E2) \propto (Q_0)^2$

Adapted from: P. T. Greenlees, et al. *Phys. Rev. C*, **78**:021303(R), 2008

University of Jyväskylä

Spectroscopy at Jyväskylä

SAGE – conversion-electron spectroscopy

http://ns.ph.liv.ac.uk/SAGE/home.html J. Pakarinen, et al. *Eur. Phys. J. A*, **50**:53, 2014

Internal conversion

- Competes with γ decay, but an atomic electron is emitted not a photon
- $E_{e^-} = E_{\gamma} E_{\text{binding}}$
- Conversion coefficient, $\alpha = \frac{\lambda_{\rm e}}{\lambda_{\gamma}}$
- Higher at high Z
- Higher at low E
- Depends on transition multipolarity
- α also depends on electron shell (and sub-shell, $L_{\rm I}$, $L_{\rm II}$, $L_{\rm III}$, . . .)

SAGE Team

Jamie Chadderton (Uni. Liverpool)

S20 Experiment

- Fusion-evaporation: $^{204}\text{Hg}(^{48}\text{Ca},2n)^{250}\text{Fm},$ $\leq 1~\mu\text{b}$ cross section
- SAGE + RITU + GREAT
- pprox 9.3 days of data over 2 weeks

Adapted from: J. E. Bastin, et al. Phys. Rev. C, 73:024308, 2006

Spectroscopy at Jyväskylä - Isomer Tagging

Adapted from: P. T. Greenlees, et al. *Phys. Rev. C*, **78**:021303(R), 2008

Above the $K^{\pi} = 8^{-}$ isomer

Jamie Chadderton (Uni. Liverpool)

Above the $K^{\pi} = 8^{-}$ isomer

Jamie Chadderton (Uni. Liverpool)

Internal conversion – transition multipolarity

Separation of E2 and M1 electrons

Separation of E2 and M1 electrons

Simulating the isomer

APPROACH: Simulate e^- spectrum with different $(g_k - g_R)$ values. \Rightarrow Compare $\Sigma(E_2)/\Sigma(M_1)$ of simulation to experiment.

R-Metric – sim vs exp vs theory

- K-Isomers are an avenue for SP orbitals relating to next spherical shell gaps
- ²⁵⁰Fm K^{π}=8⁻ isomer studied through e⁻- γ spectroscopy for the first time.
- Alternative method for determining gK for low statistics data, applied to 250 Fm. 2ν state favoured, in agreement with previous studies
- N=152 and Z=100 Deformed shell gaps survive this round

Collaboration

University of Liverpool

J. Chadderton, R.-D. Herzberg, A.J. Ward, P.A. Butler, T. Calverley,

L. Harkness-Brennan, C. McPeake, A. Mistry

University of Jyväskylä

P. Papadakis, P.T. Greenlees, K. Auranen, H. Badran, D.M. Cox, T. Grahn, A. Herzáň,
U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Leino, P. Nieminen, J. Pakarinen,
J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey,
J. Sorri, S. Stolze, J. Uusitalo

CSNSM, IN2P3-CNRS

K. Hauschild, A. Lopez-Martens, G. Henning, J. Ljungvall

CEA Saclay

R. Briselet, A. Drouart, W. Korten, B. Sulignano, Ch. Theisen, M. Zielińska

GSI Helmholtzzentrum für Schwerionenforschung

D. Ackermann, L.-L. Andersson, J. Gerl, F.P. Heßberger, H.J. Wollersheim

Institut für Kernphysik, Universität zu Köln

P. Reiter

Argonne National Laboratory

T.L. Khoo

Thank You!

Questions?

Find my work on GitHub:

github.com/JChads4

Thank you for your time!