Isomeric Decays in Neutron-Rich ^{183,184}Hf isotopes Using the KISS facility Nuclear Physics Conference 2025 Siddharth Doshi s.doshi1@uni.brighton.ac.uk #### **Introduction: Isomers** Adapted from H.J.Wollersheim., Physics with Exotic Nuclei Talk, 2016; P.M.Walker & G. Dracoulis, Nature . 399 (1999) 35. #### **A Known Example** ¹⁸³W stable γ -decay event of an isomer observed in ¹⁸³Hf. | ¹⁸⁹ А и | ¹⁹⁰ Αu | ¹⁹¹ Αu | ¹⁹² Αu | ¹⁹³ Αu | ¹⁹⁴ Αu | 195Au
e- capture | ¹⁹⁶ Αu | 197Au
Stable | |--------------------------------|------------------------------------|-----------------------------|--------------------------------|-------------------------------|-----------------------------|-------------------------------------|--------------------------|--------------------------------| | 188 Pt
e- capture | ¹⁸⁹ Pt
_{β+} | 190 Pt | 191 Pt
e- capture | ¹⁹² Pt
α | 193 Pt
e- capture | 194Pt
Stable | 195 D (| 196 Pt
Stable | | ¹⁸⁷ Ir
β+ | ¹⁸⁸ Ir
β+ | 189 Ir
e- capture | ¹⁹⁰ Ir
β+ | 191] r
Stable | ¹⁹² Ir
β- | 193 T | ¹⁹⁴ Ir
β- | 195 Ir β | | ¹⁸⁶ Оs | ¹⁸⁷ Os | ¹⁸⁸ Οs
α | ¹⁸⁹ Os | ¹⁹⁰ Оs | 191 0 \$ | ¹⁹² Os
^{2β-} | ¹⁹³ Οs | ¹⁹⁴ Οs | | ¹⁸⁵ Re | ¹⁸⁶ Re | ¹⁸⁷ Re | ¹⁸⁸ Re | ¹⁸⁹ De | ¹⁹⁰ Re | 191 Re
β- | 192 Re
β- | ¹⁹³ Re | | 184 W | 185 W β- | 186 W
2β- | 187 ι γ
β- | ¹⁸⁸ W
β- | 189 W
β- | 190 W
β- | 191 W
β- | 192 W
β- | | ¹⁸³ Τa | ¹⁸⁴ Та | ¹⁸⁵ 7α
β- | 86 Ta
β- | 187 Та
β- | 188 Ta
β- | ¹⁸⁹ Та | ¹⁹⁰ Та | ¹⁹¹ Та | | ¹⁸² Hf
β- | 183Hf | 184 Hf
β- | ¹⁸⁵ Hf
β- | 186 Hf | ¹⁸⁷ Ηf | ¹⁸⁸ Hf
β- | ¹⁸⁹ Hf | ¹⁹⁰ Hf
β- | New Isomers $T_{1/2} > 1s$ #### **Introduction: The Neutron-Rich Region** - > Neutron rich nuclei in the mass 180-190 region: - Predicted to have longer half-lives^[1]. ^[1]P.M.Walker *et al.* / Nature 399(1999)35;Hyp. Int. 135(2001)83 | ¹⁸⁹ Au
β+ | ¹⁹⁰ Αu | ¹⁹¹ А и | ¹⁹² Αu | ¹⁹³ Αu | ¹⁹⁴ Αu | 195Au
e- capture | ¹⁹⁶ Αu | 197Au
Stable | |-----------------------------|---|--------------------------------|------------------------------------|--------------------------|-----------------------------|-------------------------------------|--------------------------|------------------------------------| | 188 Pt
e- capture | ¹⁸⁹ Pt
_{β+} | ¹⁹⁰ Pt | 191 Pt
e- capture | 192 Pt | 193 Pt
e- capture | 194 Pt
Stable | 195 Pt | 196 Pt
Stable | | 187 Ir
β+ | ¹⁸⁸ Ir
_{β+} | 189 Ir
e- capture | ¹⁹⁰ Ιr
_{β+} | 191] r
Stable | ¹⁹² Ir
β- | 193 Ir
Stable | ¹⁹⁴ Ir
β- | ¹⁹⁵ Ir
β- | | ¹⁸⁶ Οs | ¹⁸⁷ Os | ¹⁸⁸ Os | ¹⁸⁹ Os | ¹⁹⁰ Os | ¹⁹¹ Os
β- | ¹⁹² Οs
^{2β-} | ¹⁹³ Οs | ¹⁹⁴ O S | | 185Re
Stable | ¹⁸⁶ Rе | ¹⁸⁷ Re | ¹⁸⁸ Re | ¹⁸⁹ Rе | ¹⁹⁰ Rе | ¹⁹¹ Re | ¹⁹² Rе | ¹⁹³ Re
β- | | 184 W | 185 W
β- | 186 W
2β- | 187 W
β- | 188 W
β- | 189 W
β- | 190 W
β- | 191 W
β- | 192 W
β- | | ¹⁸³ Та | ¹⁸⁴ Та | ¹⁸⁵ Та | ¹⁸⁶ Та | ¹⁸⁷ Та | ¹⁸⁸ Τa | ¹⁸⁹ Та | ¹⁹⁰ Та | ¹⁹¹ Та
_{β-} | | ¹⁸² Hf β- | ¹⁸³ Hf β- | ¹⁸⁴ Hf
β- | ¹⁸⁵ Hf β- | ¹⁸⁶ Hf | ¹⁸⁷ Ηf
β- | ¹⁸⁸ Hf
β- | ¹⁸⁹ Hf | ¹⁹⁰ Hf
β- | #### **Introduction: The Neutron-Rich Region** - ➤ Neutron rich nuclei in the mass 180-190 region: - Predicted to have longer half-lives^[1]. - Exhibit a prolate to oblate shape transition, resulting in high-K isomers decaying to low-K states^[2]. | ¹⁸⁹ Αυ
_{β+} | ¹⁹⁰ Α u | ¹⁹¹ Αu | ¹⁹² Α υ | ¹⁹³ Α υ | ¹⁹⁴ Αu | 195 Au
e- capture | ¹⁹⁶ Α u | ¹⁹⁷ Au
Stable | |------------------------------------|------------------------------------|-----------------------------|--------------------------------|---------------------------|-----------------------------|-------------------------------------|---------------------------|--------------------------------| | 188Pt
e- capture | ¹⁸⁹ Pt
_{β+} | 190 Pt | 191 Pt
e- capture | 192 Pt | 193 Pt
e- capture | 194 Pt
Stable | 195 Pt | 196Pt
Stable | | ¹⁸⁷ Ir | ¹⁸⁸ Ir
β+ | 189 Tr
e- capture | ¹⁹⁰ Ir
β+ | 191 I r
Stable | ¹⁹² Ir
β- | 193] r
Stable | ¹⁹⁴ Ir
β- | ¹⁹⁵ Ir
β- | | 186 O S | ¹⁸⁷ Os | 188 O S | ¹⁸⁹ Оs | ¹⁹⁰ Os | ¹⁹¹ Os
β- | ¹⁹² Οs
^{2β-} | ¹⁹³ Οs | ¹⁹⁴ Os
β- | | ¹⁸⁵ Re | ¹⁸⁶ Re | ¹⁸⁷ Re | ¹⁸⁸ Re | ¹⁸⁹ Rе | ¹⁹⁰ Re | ¹⁹¹ Re | ¹⁹² Rе | ¹⁹³ Rе | | 184W | 185 W
β- | 186 W
2β- | 187 W
β- | 188 W
β- | 189 W
β- | 190 W
β- | 191 W
β- | 192 W
β- | | ¹⁸³ Τα | ¹⁸⁴ Та | ¹⁸⁵ Τα | ¹⁸⁶ Та | ¹⁸⁷ Та | ¹⁸⁸ Та | ¹⁸⁹ Та | ¹⁹⁰ Та | ¹⁹¹ Та | | ¹⁸² Hf | ¹⁸³ Hf | ¹⁸⁴ Hf | ¹⁸⁵ Hf
β- | ¹⁸⁶ Ηf | ¹⁸⁷ Ηf | ¹⁸⁸ Ηf | ¹⁸⁹ Hf | ¹⁹⁰ Ηf
β- | #### **Introduction: The Neutron-Rich Region** - Neutron rich nuclei in the mass 180-190 region: - Predicted to have longer half-lives^[1]. - Exhibit a prolate to oblate shape transition, resulting in high-K isomers decaying to low-K states^[2]. ^[1]P.M.Walker *et al.* / Nature 399(1999)35;Hyp. Int. 135(2001)83 ^[2] F.R.Xu *et al.* / Phys. Rev. C 62(2000)014301 - Challenges: - Neutron richness. - Refractory chemical properties of elements from hafnium to platinum. #### **Aim of the Experiment** ➤ Using multi-nucleon transfer reactions, the KEK Isotope Separation System (KISS) facility in RIKEN, Japan, has developed a system for studying the spectroscopy of long-lived isomers in neutron rich mass region. Summed γ-γ coincidence spectrum and the associated level scheme for ¹⁸⁷Ta obtained at KISS. P.M. Walker et al. / Phys. Rev. Lett. 125 (2020) 192505 #### **Aim of the Experiment** ➤ Using multi-nucleon transfer reactions, the KEK Isotope Separation System (KISS) facility in RIKEN, Japan, has developed a system for studying the spectroscopy of long-lived, high-K isomers in neutron rich mass region. Summed γ - γ coincidence spectrum and the associated level scheme for 187 Ta obtained at KISS. P.M. Walker et al. / Phys. Rev. Lett. 125 (2020) 192505 - > The experiment aimed : - To make detailed spectroscopic studies of the long-lived isomers in ¹⁸³Hf and ¹⁸⁴Hf, - To learn about the favouring of high-K states, - To measure the β and γ-decay properties, - To investigate the sensitivity to shape changes. #### The KISS Facility Y. Hirayama *et al.*, Nuclear spectroscopy of r-process nuclei using KEK Isotope Separation System; Nucl. Inst. Meth. B 463(2020)425-430 Schematics of KISS for 136 Xe on $^{nat}W \rightarrow ^{183,184}$ Hf with subsequent spectroscopy. #### Yield calculation of ^{183,184}Hf - Since the data for the experiment were accumulated throughout different time sequences, the determination of production yield became somewhat complex. - The number of nuclei that decayed during irradiation time (t₁) is determined as: $$N(t_1) = Y \left[t_1 + \frac{e^{-\lambda t_1}}{\lambda} - \frac{1}{\lambda} \right]$$ • Here λ is the decay constant. Meanwhile, the number of nuclei that decayed in the time following irradiation (t₂) is calculated as: $$N(t_2) = Y \left[\frac{1}{\lambda} - \frac{e^{-\lambda t_1}}{\lambda} - \frac{e^{-\lambda t_2}}{\lambda} + \frac{e^{-\lambda (t_1 + t_2)}}{\lambda} \right]$$ • In our current analysis, we have calculated yields for run files having $t_1=t_2=T$. This results in total yield being: $$Y = \frac{N(T)}{T - \frac{e^{-\lambda T}}{\lambda} + \frac{e^{-2\lambda T}}{\lambda}}$$ Here, $N(T) = N(t_1) + N(t_2)$, which is the total number of decays and is obtained through the weighted average of the number of decays of the transition in question Number of nuclei during irradiation (1 hour of beam on) and decay (1 hour of beam off). #### Yield calculation of ¹⁸⁴Hf | E _γ
(keV) | A _y | $oldsymbol{arepsilon}_{oldsymbol{\gamma}}$ | l _γ
From [1] | N(T) | Wt. N(T)
(per run) | Yield
(ions/sec) | |-------------------------|----------------|--|----------------------------|-----------|-----------------------|---------------------| | 139.1(2) | 47(15) | 0.1690(17) | 46.0(70) | 1511(534) | 4.04.4(2.77) | 0.40/4\ | | 344.9(2) | 31(8) | 0.1290(13) | 35.0(60) | 1716(532) | 1614(377) | 0.18(4) | $^{184}_{72}Hf_{112}$ ^[1] https://www.nndc.bnl.gov/ ## Yield calculation of ¹⁸³Hf | Ε _γ
(keV) | A _γ | εγ | l _γ
From [1] | N(T) | Wt. N(T)
(per run) | Yield
(ions/sec) | |-------------------------|----------------|------------|----------------------------|-----------|-----------------------|---------------------| | 73.2(2) | 110(15) | 0.1370(14) | 38.0(40) | 5282(911) | 1054(166) | 0.04(7) | | 783.7(3) | 134(14) | 0.0900(9) | 65.5(19) | 5683(595) | 1854(166) | 0.81(7) | | T _{1/2} =1.018 H | | | | | | |---------------------------|----------|----|-------------|------------------------|--| | \β | S-: 100% | | | | | | (5/2 ⁻) | | | 85 | 56.9 | | | | | 78 | 3.7 | | | | (5/2 +) | | | 4. | 59.1
- | | | 9/2+ | 315.9 | | 459.1
14 | 13.2 | | | 9/2 - | · | | | 3.2 _(107ns) | | | 7/2 + | 73.2 | | | 0 | | | $^{183}_{73}Ta_{110}$ | | | | | | $^{183}_{72} Hf_{111}$ ^[1] https://www.nndc.bnl.gov/ Peak areas at 73 keV in ¹⁸³Hf run files added together Time distribution (ns) Comparing peak areas at 73 keV after dividing the first half of the beam gated β - γ coincidence delayed spectra into smaller time intervals. ^[1]https://www.nndc.bnl.gov/ Beam gated β - γ coincidence delayed spectra. Time Distribution (µs) Peak areas at 459 keV in ¹⁸³Hf run files added together | | Ι _γ (%) | Normalised
I _v (%) | |----------------------|--------------------|----------------------------------| | | From [1] | -γ(/ ο / | | Old Intensity | | 9(4) | | New
Intensity | | 33(6) | | ±0.25 µs | 30(1) | 9(3) | | ±0.3 µs to
±50 µs | | 24(4) | ^[1] https://www.nndc.bnl.gov/ | | $J_i^\pi o J_f^\pi$ | $E_{\text{level}} \text{ (keV)}$ | $T_{1/2}$ | $E_{\gamma} \; (\text{keV})$ | |----------------------------|---|----------------------------------|-------------------|------------------------------| | $^{177} { m Lu}^{[1]}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 569.6721(5) | $155(7) \ \mu s$ | 111.715(1) | | $^{177}\mathrm{Ta}^{[1]}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 487.63(6) | 26(3) ns | 417.16(5) | | $^{179}\text{Ta}^{[1]}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 520.23(18) | $0.28(8) \ \mu s$ | 281.69(16) | | $^{181}\mathrm{Ta}^{[1]}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 615.19(3) | $18(1) \ \mu s$ | 133.027(18) | | $^{183}\mathrm{Ta}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 459.1 + x | $41(7) \ \mu s$ | < 100 | | $^{177} \text{Re}^{[1]}$ | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 495.73(15) | | 411.0(2) | | 183 Re ^[1] | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 878.92(5) | | | | | $1/2^{+}[411] \rightarrow 5/2^{+}[402]$ | 625.516(8) | | 625.52(1) | ^[1] https://www.nndc.bnl.gov/ ## Preliminary Isomeric spectroscopy of ¹⁸⁴Hf g.s β-decay to ¹⁸⁴Ta Beam gated β - γ coincidence delayed spectra. Comparing peak areas at 233 keV after dividing the beam on period of beam gated β - γ coincidence delayed spectra into smaller time intervals. #### **Summary** - The experiment expected production rate was 1.5pps for ¹⁸³Hf [0.81(7)] and ¹⁸⁴Hf [0.18(4)]. But current calculation indicate significant lower yields, but it is worth noting that despite lower yields, it was for the first time that such isotopes have been produced using the KISS facility. - the "new" isomer populated in 183 Hf ground-state beta decay (involving 459 keV gamma decay). This is a $1/2^+[411]$ state just above the $5/2^+$ 459 keV level in 183 Ta, which would decay by an E2 transition to the $5/2^+$ state. - ➤ The "new" isomer that seems to be populated in ¹⁸⁴Hf isomeric decay (233 keV gamma decay) still needs work. #### **Collaborators** Y. Hirayama, Y.X. Watanabe, P. Schury, S. Kimura, M. Wada A.Takamine, J.Yap H. Watanabe, J. Chen G. Lane F.G. Kondev Y. Litvinov # UNIVERSITY OF SURREY S. Pascu, Zs. Podolyák, P. M. Walker, G. Bartram, G. Hudson-Chang, V.Chandrakumar **J.Cubiss** #### 中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of Sciences S. Dutt, S. Guo, G. Li, J.Gada, Z. Liu, P. Ma **University of Brighton** S. Doshi, A.M.Bruce **Thank You For Listening!** # **Additional Slides** # Plotting Reduced χ^2 vs T_{1/2} To get errors: 32% confidence level is considered with F-distribution factor $$T_{1/2} = 41^{+6}_{-4} \mu s$$ # Missing intensity of 459 | | Old intensities by normalizing using Iγ of 783.7 keV | | | | | | | | | |--------|--|-------|------|-------|-------------------------|-------|--|--|--| | Energy | Intensity
(%) | Error | Area | Error | Normalized
Intensity | Error | | | | | 73.2 | 38 | 4 | 110 | 15 | 35 | 6 | | | | | 459.1 | 29.8 | 0.9 | 22 | 9 | 9 | 4 | | | | | 783.7 | 65.5 | 1.9 | 134 | 14 | 65 | 10 | | | | | | New intensities obtained by normalizing using Iγ of 783.7 keV | | | | | | | | | |--------|---|-------|------|-------|-------------------------|-------|--|--|--| | Energy | Intensity
(%) | Error | Area | Error | Normalized
Intensity | Error | | | | | 73.2 | 38 | 4 | 127 | 13 | 40 | 7 | | | | | 459.1 | 29.8 | 0.9 | 85 | 11 | 33 | 6 | | | | | 783.7 | 65.5 | 1.9 | 134 | 15 | 65 | 10 | | | | #### **Introduction:** K isomers $$|K_f - K_i| = |\Delta K| \le \lambda$$ K can only change by units up to multipolarity of the transition $$|\Delta K| - \lambda = v$$ Larger changes in K result in hindered transition \succ Individual nucleons have angular momentum, j, with projection Ω on the symmetry axis, and K is the sum of these Ω values. # Intensity calculation of ¹⁸⁴Os | Gating on 494 | | | | | | | |-------------------------|------------------------------|---------------------------|--|--|--|--| | E _γ
(keV) | l _γ %
From [1] | Norm.
I _v % | | | | | | 119.8 | 100 | 55(22) | | | | | | 263.9 | 100 | 64(31) | | | | | | 841.3 | 100 | 117(45) | | | | | | 682.1 | 146 | 146(55) | | | | | | Gating on 390 | | | | | | | |-------------------------|-------------------------|---------------------------|--|--|--|--| | E _γ
(keV) | l γ%
From [1] | Norm.
I _Y % | | | | | | 119.8 | 46 | 38(11) | | | | | | 263.9 | 46 | 43(12) | | | | | | 944.1 | 46 | 46(15) | | | | | #### **MSPGC** Low-background and highly efficient Gas counter for beta-ray detection # Getting Half-life of ¹⁸³Hf g.s. using build up equation Fitting peaks, where implantation period is fitted using: N(t) = Y/ λ * (1 - exp(- λ * t)) And decay period is fitted using: N(t) = [A/ λ * (1 - exp(- λ * t1))] * exp(- λ * (t2)) | $\overline{E_{\gamma}}$ | $T_{1/2}$ | wt. $T_{1/2}$ | |-------------------------|--------------|---------------| | (keV) | hr | hr | | 73.2(2) | 1.008(0.218) | 1.004(0.179) | | 783.7(3) | 0.994(0.313) | | ## **Defining Prompt and Delay through β-γTime Difference** # Looking for activity curve from BBTDF in 184Hf 20min/5sec run file # Delayed Spectra of ¹⁸³Hf # Delayed Spectra of ¹⁸⁴Hf # **Efficiency** #### **Nuclear Deformation** L. P. Gaffney et al. Nature, 497, 2013. $$R(\theta,\phi) = R_{\text{av}} \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda,\mu} Y_{\lambda,\mu}(\theta,\phi) \right)$$ ## **Nuclear Deformation**