

Institute for Particle Physics Phenomenology (IPPP)

UK's national centre for particle phenomnology —

Michael Spannowsky IPPP Durham

UK's National Centre for Particle Phenomenology

Historical overview

• IPPP was founded in 2000 as a consequence of a PPAC call

 Rutherford Lab Theory group replaced by the Durham University hosted Particle Physics group

- IPPP takes on responsibilities of a national centre
- Grew from a handful of members to over 90 (in 2016). Currently, 70-80 group members

Structural overview

The Institute for Particle Physics Phenomenology (IPPP) in Durham is UK's National Centre for Particle Phenomenology

Structural overview

The Institute for Particle Physics Phenomenology (IPPP) in Durham is UK's National Centre for Particle Phenomenology

4

Perm. staff needs to deliver on University objectives (teaching, admin., research)

- 40 (R) / 40 (T) / 20 (C)
- Staff academics, i.e. free in research etc

Perm. staff has obligation to deliver on all objectives of national centre

- workshops/conf/schools
- Engage with (Sen)Assoc/DIVA
- Support all STFC-funded research

Structure of IPPP

Objective of IPPP is to deliver on those four pillars

Manchester

What is HEPData?

- Unique open-access repository for scattering data from more than 9000 experimental HEP ("hep-ex") papers.
- Publication-related data complementary to event-level data provided through recent <u>CERN Open Data</u> portal.
- Traditional focus on unfolded measurements, but in recent years also include material for *recasting* LHC searches.
- Based in Institute for Particle Physics Phenomenology (IPPP) at Durham University (UK), going back to 1970s.
- Funded by UK Science & Technology Facilities Council (STFC), with current grant until 09/2026.

7

IOP Nuclear Physics

Coverage of experiments

HEPData framework is open for everybody

IOP Nuclear Physics

Manchester

8

Spannowsky

23.04.2025

Francesco Sergio Lorraine Coghill

- Science Fairs
- Science Festivals
- School engegement
- Master Class
- Social Media

youtube: @ipppdurham9492 X: @IPPP_Durham

Outreach at IPPP

@IPPP_Durham at the Orkney Science Festival 2018

9

Spannowsky

23.04.2025

Research

Core research delivers full end-to-end support for the HEP community in agreement with STFC's funding priorities

• Informs and guides large international experimental collaborations:

ATLAS, CMS, ALICE, LHCb, DUNE, NA62, Belle II and future experiments

- End-to-end coverage of HEP processes
- Service-centred research is labour-intensive and requires strategic long-term commitment

Understanding the structure of the proton

- Generalised Parton Distribution (GPD) encode information about longitudinal momentum and transverse spatial position
 - → 'tomographic image' of proton in position space
 - → reduce to ordinary PDFs in forward limit
 - ➡ Accessed in exclusive processes, like deeply virtual compton scattering (DVCS) and exclusive meson production
- **Transverse Momentum Distribution (TMD)** of partons, giving insight into the momentum-space structure, beyond collinear approximation
 - ➡ reduce to PDFs when integrated over transverse momentum
 - → Accessed in semi-inclusive DIS (SIDIS) and Drell-Yan

Frank Krauss

Stephen Jones

23.04.2025

EIC (Electron-Ion Collider) will provide **high-luminosity, high-energy electron-nucleon collisions** with **polarisation**, enabling precise measurements of observables sensitive to TMDs (Silvers, Boer-Mulders) and GPDs (DVCS, meson production)

➡ GPD and TMD in nuclei (He-3, Deuteron, Carbon, Lead)

Many theoretical questions:

many-body nuclear structure (wave functions, spectral functions)

➡ nuclear medium corrections, coherence effects (saturation etc)

IOP Nuc	ear	Physics	
---------	-----	---------	--

Manchester

11

Spannowsky

Forward scattering amplitudes, small-x resummation and Glauber exchange

- Forward amplitudes, small-x resummation, and Glauber exchanges are crucial to extending QCD factorisation theorems into the low-x, high-density regime—precisely the domain where high-energy particle theory and nuclear physics converge.
- Nuclear targets enhance gluon densities and multiple scattering effects, forcing us to go beyond standard DGLAP and collinear factorisation. Understanding this interface, through tools like BFKL, CGC, and hybrid factorisation, is essential for a coherent description of hadronic and nuclear structure at the EIC and LHC forward programs.

Frank Krauss

Stephen Jones

Valery Khoze

Peter Richardson

Forward scattering in Drell-Yan

Factorization at lowest order in Glauber exchange

12

Spannowsky

Hadron Physics

From the **flavour physics** perspective, **hadron physics** is essential because the quark-level processes (e.g., weak decays) are embedded in strongly interacting, nonperturbative final states.

- Pions, kaons, and their mixtures dominate light-flavour transitions (especially for V_{us} , V_{ud}).
- Understanding **final-state interactions** among these hadrons is crucial for the precision extraction of CKM elements.

Stefan Schacht Danny van Dyk

 V_{us} from $K \to \pi \ell \nu$ (semileptonic kaon decays) requires knolwedge of vector form factor $f_+(0)$

 V_{ud} from superallowed nuclear beta decays from decays between $0^+ \rightarrow 0^+$ isospin analog states

→ Nuclear theory input key: nuclear structure corrections dominate uncertainty budget now (PDG).

Joint methodological interest: Dispersion relations, conformal mapping and expansion

This is a textbook case of nuclear and particle physics co-dependence:

- Nuclear theory must provide reliable estimates of structure-dependent corrections, with uncertainties
- Recent work (e.g., J.C. Hardy et al. [INSPIRE 1821327], Czarnecki et al. [INSPIRE 1743986]) uses dispersive methods to compute nuclear radiative corrections — previously modeled more crudely
- Connection to nuclear beta decay experiments is direct and quantitative

IOP Nuclear Physics N

Manchester

13

Spannowsky

23.04.2025

Neutrino scattering

As neutrino experiments transition from discovery mode to **precision measurements**:

- CP-violation phase δ_{CP} ,
- mass ordering,
- mixing angles with per cent-level uncertainties,

Ivan Martinez-Soler

dominant theoretical uncertainty no longer oscillation theory but neutrino-nucleus interactions.

 $N_{\text{events}}(E_{\nu}) = \Phi(E_{\nu}) \cdot P_{\alpha \to \beta}(E_{\nu}, L) \cdot \sigma_{\nu_{\beta}N}(E_{\nu}) \cdot \epsilon(E_{\nu})$

14

- Neutrino beams are **not monoenergetic**, so one must reconstruct the neutrino energy from the **final state particles**, e.g. lepton kinematics.
- This reconstruction depends sensitively on assumptions about how the neutrino interacts with the target nucleus.

Nuclear physics controls:

- Fermi motion, nucleon correlations, meson exchange currents, final-state interactions (FSI)
- transition from quasielastic (QE) to resonance (RES) to DIS regimes

Neutrinoless double β decay - $0\nu\beta\beta$

- **Ονββ decay** is the **only feasible experimental probe** of whether neutrinos are **Majorana particles**, i.e., their own antiparticles.
- It also probes **lepton number violation (LNV)**, which is required for most mechanisms of **baryogenesis** via **leptogenesis**.
- If observed, it would have **far-reaching consequences** for the SM and BSM physics including neutrino mass mechanisms and CP violation.

Jessica Turner

Martinez-Soler

See also: Jordy de Vries CERN colloquium, February 2025

The rate for $0\nu\beta\beta$ decay is proportional to the square of the nuclear matrix element (NME), multiplied by a phase space factor and the square of the effective Majorana mass $m_{\beta\beta}$:

$$\left[T_{1/2}^{0\nu}\right]^{-1} \propto |M^{0\nu}|^2 \cdot \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \cdot G^{0\nu}(Q,Z) \quad \longleftarrow \text{ phase factor (well known)}$$

Thus, to extract (or even constrain) $m_{\beta\beta}$, we **must know** $M^{0\nu}$ — the nuclear matrix element — **accurately**. Nuclear effects are **Fermi motion**, **nucleon-nucleon correlations**, **meson exchange currents**, and **fs interactions**

Nuclear rates limit BBN bounds

BBN describes the synthesis of light nuclei (D, He-3, He-4, Li-7, etc.) in the first few minutes of the Universe, when temperatures dropped below $T \sim MeV$.

It is sensitive to new physics because:

- It occurs at times $t \sim 1 10^3$ s, energies $E \sim \text{MeV}$
- It is well understood theoretically, with well-measured nuclear reaction rates,
- It depends on the expansion rate, radiation content, and neutrino sector at the time.

So, comparing predicted vs observed abundances allows us to constrain deviations from the Standard Model in the early Universe.

Nuclear Reaction Rates:

BBN predictions depend critically on the rates of a handful of key nuclear reactions, such as

$$n + p \rightarrow D + \gamma$$
, $D + D \rightarrow He^3 + n$, $He^3 + He^4 \rightarrow Li^7 + \gamma$

Uncertainties in these rates directly translate into abundance prediction uncertainties.

	Some ra	tes not well know	n	-	Limits BBN as cosm	ological probe
IOP Nuclear Phy	vsics	Manchester	16		Spannowsky	23.04.2025

Martin Bauer

Djuna Croon

Dark matter direct detection

Especially important for light DM:

• Light DM (with mass $m_{\chi} \lesssim 10 \, {\rm GeV}$) imparts very low recoil energies ($\lesssim 1 \, {\rm keV}$) to nuclei.

Rodrigo Alonso

Djuna Croon

 As a result, the nuclear and detector response must be understood at very low energy thresholds — a regime where nonperturbative nuclear effects dominate.

Quenching factors: How much of the recoil we see

- When a nucleus recoils from a DM hit, not all of its kinetic energy is converted into **detectable signals** (light, charge, phonons). The quenching factor tells us what fraction is observed.
 - Depends on: Target material (e.g. xenon, germanium, argon)
 - Recoil energy (nonlinear at low energies)
 - Ionisation vs phonon production vs scintillation

Uncertainties in quenching directly translate to **uncertainties in recoil energy**, and thus in the **inferred DM mass and cross section.**

Nuclear physics and condensed matter input is needed to **calibrate and model** these effects, often at the **few-percent level**.

Nuclear Form Factors: Internal Structure of the Target

For DM-nucleus scattering, especially at **nonzero momentum transfer**, the **nuclear form factor** enters the cross section:

Calculated via ab initio nuclear theory, e.g. chiral EFT, coupled cluster, shell model

Migdal Effect: Inelastic Channels for light dark matter

The Migdal effect is a quantum mechanical process where a DM-induced nuclear recoil causes atomic ionization or excitation. It opens up a detectable **electron recoil channel**, even when the nuclear recoil is too small to see.

Calculating the Migdal amplitude requires understanding the coupling between nuclear motion and electron orbitals. This is a challenging **many-body problem**, requiring nuclear + atomic physics input

High energy astroparticle physics

Many constraints on light BSM physics (axions, sterile neutrinos, dark photons, millicharged particles, ...) rely on stellar, supernova, or cosmic-ray observables, whose interpretation hinges on nuclear reaction rates. Nuclear uncertainties thus directly limit our ability to probe and constrain new physics.

Francesca Chahda-Day

Martin Bauer

Cosmic Rays: Spallation and Secondary Production

High-energy cosmic rays (protons, nuclei) collide with interstellar gas and produce:

- Light elements (e.g. Li, Be, B via spallation),
- **Pions** \rightarrow which decay into neutrinos and gamma rays.

This is essential for:

- Dark matter indirect detection (e.g. positrons, antiprotons, gamma rays from DM annihilation),
- High-energy neutrino flux predictions (e.g. IceCube)
- Modeling cosmic-ray propagation and backgrounds

Precise cross sections for **nuclear fragmentation and pion production** on light elements (C, O, N, H) are needed. Many of these are still **poorly measured**

Helium Burning: Triple- α and $^{12}C(\alpha, \gamma)^{16}O$

These two reactions control the carbon-to-oxygen ratio in stellar cores:

Triple- α : $3\alpha \rightarrow {}^{12}C$ and Alpha-capture: ${}^{12}C + \alpha \rightarrow {}^{16}O + \gamma$

These reactions determine the outcome of stellar evolution, supernova energetics, and element production, i.e. **final mass of stars**, conditions in **pair-instability supernovae** and late **stages of star burning**

 $^{12}C(\alpha, \gamma)^{16}O$ remains one of the most important yet least certain nuclear reaction rates — it's very hard to measure at astrophysical energies ($\sim 300 \text{ keV}$).

r-process Nucleosynthesis and Kilonovae

The r-process (rapid neutron capture) is responsible for producing heavy elements beyond iron, such as gold, platinum, and uranium

Predicting abundances requires:

- Neutron capture rates on unstable, neutron-rich isotopes,
- Fission barriers, beta-decay rates, mass models, and neutrino interactions
- Often far from experimental reach → needs **nuclear theory extrapolations**.

NP could show up in cooling channels (axions), mod. neutrino opacities etc

Computational Methods

Tensor networks, machine learning, and quantum computing

offer complementary and increasingly essential capabilities for addressing some of the hardest problems in theoretical physics — especially where standard methods break down.

Steve Abel

Michael Spannowsky

Tensor Networks

These are variational ansätze for quantum states with entanglement structure encoded in the geometry of the network.

- ➡ Lattice QCD at finite density: Tensor networks provide sign-problem-free formulations in 1+1D and progress in 2D
- Nuclear many-body theory: Tensor networks can compactly represent lowentanglement wavefunctions.

Quantum Computing

While still in early stages, quantum computing targets problems intractable on classical machines, particularly for:

➡ Hamiltonian simulation for real-time evolution, non-equilibrium QFT, finite density systems etc

Science-exchange facilitation

Plenty of expertise in hosting workshops, conferences and schools

- Workshops each year ~15 small to mid-size meetings
 - often meetings supported by associateships
- **Conferences** • each year 3-5 conferences
 - ATM, Planck, Top, Pascos, SM@LHC, ...
- Schools each year ~3 PhD schools
 - YTF, YETI, STFC summer school

IPPP contributes to workshops that are organised outside Durham Reach out to the IPPP if you want to organise conference/workshop

Fellowships and Associateships

Awarded by Steering Committee twice a year (March & September)

Senior Experimental Fellowship

https://www.ippp.dur.ac.uk/senior-fellowships/

IPPP Associateship

https://www.ippp.dur.ac.uk/associateships/

- Funds, up to £15k for senior UK-based experimenters
- For entire group to collaborate with IPPP members, organise workshops etc
- £3k in support of joint research projects with IPPP members

Durham International Visitor Award (DIVA)

https://www.ippp.dur.ac.uk/diva-program/

- Nomination by UK-based host
- £5k to bring international researcher to the UK.

Manchester

For more information, please watch our showreel https://youtu.be/v7Px_T1tetc

Institute for Particle Physics Phenomenology

Please engage with the IPPP

https://www.ippp.dur.ac.uk/

