

Exploring the Structure of Hadrons at the Intensity Frontier

Rachel Montgomery (University of Glasgow)

On behalf of many from the UK and International JLab Communities ...

IOP Nuclear Physics Conference 2025 University of Manchester

)

Microcosm of Hadrons

Emergence of structure in QCD

Quarks/gluons confined in nuclear matter by strong force, mediated by gluons

 QCD - theory describing strong interaction Many aspects of strong force not understood

• Picture inside hadrons is dynamic • Short distances \rightarrow asymptotic freedom • Long distances i.e. hadronic scale \rightarrow confinement \rightarrow why?

 Understanding dynamics of strong interaction crucial to understand everyday properties of matter e.g. mass / spin

	Observed Mass	Higgs Mass
Proton (uud)	~ 1000 MeV	~10 MeV

• Nucleon unexpectedly *heavy*

• Quark masses generated by Higgs only ~1% of nucleon mass! • Gluons are massless

• ~99% of nucleon's mass due to quantum fluctuations of sea quark $q\overline{q}$ pairs, gluons, and energy associated with quarks moving close to speed of light within it

Nucleon Spin Puzzle

- Proton spin appears as 1/2
- Spins of its components should sum to this
- Only a small fraction carried by valence quarks
- How does nucleon's spin originate from quarks and gluons, and their interactions?

Hadron Structure

Wigner distributions $\rho(x, \vec{k}_T, \vec{b}_T)$

"phase space" distributions of partons in a nucleon

Longitudinal momentum

 $k^+ = xP^+$

x: longitudinal momentum fraction carried by struck parton

> b_T : transverse position, a.k.a. impact parameter

Trahsverse

osition

 b_T

Our goal: understand distributions of partons inside hadrons - how they are located and how they move

Integrals of Wigner distributions measured via lepton scattering

Pros: electromagnetic interaction \rightarrow unmatched precision

Challenges: Small cross sections

N'

Wigner Function: full phase space parton distribution of the nucleon

ent x

Jefferson Lab (JLab)

World's premier facility for lepton scattering in valence region

- Glasgow and York active in STFC funded research at JLab
- DOE national laboratory housing CEBAF
 - Continuous Electron Beam Accelerator Facility
 - High power superconducting radio frequency electron accelerator
 - World's highest intensity and highest precision multi-GeV electron beam
 - Highly polarised beam delivered to four halls simultaneously
 - •Up to: 12 GeV for D, 11 GeV for A, B, C
 - Fixed target experiments, with polarised beam and polarised targets

$$\frac{d\sigma}{d\Omega} = \sigma_{\text{Mott}} \frac{E'}{E_0} \left\{ \left(F_1\right)^2 + \tau \left[2\left(F_1 + F_2\right)^2 \tan^2\left(\theta\right) + \theta\right] \right\} \right\}$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \times \left[G_E^2 + \frac{\tau}{\epsilon}G_M^2\right] / (1+\tau) \qquad \begin{array}{c} G_E = F_1 \\ G_M = F_1 \end{array}$$

 $(F_2)^2$

 $-\tau F_2$ $+F_{2}$

- A flagship in JLab's hadron structure program
- One of the most fundamental parameterisations of nucleon's internal structure
 - Access transverse distributions of electric charge and magnetic moment
- Increasingly precise measurements and access to polarisation observables at JLab have dramatically altered our understanding of nucleon structure at high Q²
- e.g. extracting ratio G_E^p/G_M^p from double polarisation methods didn't observe scaling behaviour measured via Rosenbluth
 - Orbital angular momentum
 - Two-photon exchanges (or higher orders)
 - Sparked a new era of FF studies at Jlab

Electromagnetic Form Factors

- High Q² measurements extremely challenging due to tiny cross sections inversely dependent on Q² • Especially neutron
- Key insights into QCD and nucleon structure is revealed in Q² evolution of FF
- e.g. JLab neutron G_{E^n}/G_{M^n} results \rightarrow first ever quark flavour decomposition of FF, revealing differences in scaling between u and d quarks
 - Theory hints to di-quark correlations

Super Bigbite Spectrometer (SBS)

SBS Collaboration at JLab

Suite of FF measurements at high Q²

BigBite and Super Bigbite Spectrometers

Super Bigbite Spectrometer (SBS) Measurements

 Modular (tracking, calorimetry, timing, Cherenkov) •High-rate detectors •e.g. Gaseous electron multipliers (GEMs) for tracking

•University of Glasgow built a timing hodoscope time stamping electrons in BigBite arm and readout electronics

Super Bigbite Spectrometer (SBS) Measurements

A. Puckett, SBS Collaboration and Gross, F., et al., Eur. Phys. J. C 83, 1125 (2023)

See slides from A. Cheyne (UoG) talk this morning for GEn-RP analysis

- Unprecedented extension to higher Q²
- Improve statistical uncertainties at low Q²
- Provide constraints for GPDs and hadron tomography
- Better discriminate between QCD models in transition region between perturbative and non-perturbative regimes
- Explore flavour separation and different quark contributions to nucleon structure
- (Including future strange quark measurements)
- Experiments started late 2020
- GMn, GEn(II), GEn-RP have completed data-taking, analysis underway
 - 3 PhD students at UoG so far
- GEp data-taking underway
- Stay tuned for future results

Inclusive Structure of Mesons

Hadron	Observed Mass (MeV)	Higgs Generated Mass (MeV)
Proton (uud)	~940	~10
Pion (ud̄)	~140	~7
Kaon (us̄)	~490	~100

- Very little known experimentally about internal structures of light mesons
- Substantial theoretical work but we need data!
- Pions and kaons unexpectedly light
- Key for emergent hadronic mass (EHM) topics
- Gluon content in kaon expected to be different than pion
- Measuring distributions of light quarks versus strange quarks within pion/kaon yields experimental signatures of EHM
- Expect interesting implications for inclusive structure

Accessing Pions/Kaons at JLab - Sullivan Process

• DIS from virtual meson cloud of nucleon

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E_0^2} \cos^2\frac{\theta}{2} \left[\frac{1}{\nu}F_2(x,Q^2) + \frac{2}{M}F_1(x,Q^2)\tan^2\frac{\theta}{2}\right]$$

- Upcoming tagged deep inelastic scattering (TDIS) program
- Access F₂ structure functions for pions and kaons in valence region
- Sparse existing data for mesons (especially kaons)
- Vital input for PDFs

TDIS Measurements

Reconstruct x, Q^2 , W^2 , and M_x of recoiling system for every event

- •DIS with spectator tagging
- Access effective free targets not easily found in nature
- •Cross section is tiny \rightarrow JLab unique facility for this
- •SBS will detect scattered electrons
- •Need a novel detector for the very low momentum recoiling hadrons (60 400 MeV/c)

High Rate modular TPC

- Division into modules
 - reduced background rates
- •GEM foil readout planes
- •Segmented readout pads
- •UVa constructed first prototype •(N. Liyanage, H. Nguyen)
- •Testing on-going at JLab
- •Next is cylindrical prototyping
- •ML tracking in development (ACTS and GNN)

(S. Saha, E. Christy, JLab and A. Nadeeshani MSU)

 Potential future staged upgrades to JLab are under investigation • First would be a polarised positron beam upgrade • Considerations are underway for a subsequent electron beam energy upgrade to 22GeV

•22GeV expands kinematic phase space for TDIS, providing more data for PDF studies

•22GeV also unlocks a completely novel opportunity for meson tomography with TDIS

Glimpse into Future - Potential Energy Upgrade to 22GeV

- Data with higher invariant mass available means SIDIS on virtual meson possible for first measurement of meson TMDs in valence region!
- Expect interesting differences between meson/nucleon TMDs
- 22GeV unlocks meson DVCS via Sullivan Process \rightarrow GPDs and imaging of partons inside mesons
- Phase space for TDIS meson tomography program completely complimentary to future colliders
- Would require additional detectors for final states under study

JLab operates at the World's high-luminosity frontier in lepton scattering

Hadron structure topics at JLab are transforming our understanding of the nucleon and dynamics of QCD

On-going example activities include:

- Electromagnetic form factors of nucleon at high-Q²
- Meson structure and emergent hadronic mass

Future upgrades at JLab, e.g. addition of SoLID, potential e⁺ beam or potential energy upgrade, are unique opportunities and complimentary with future colliders

Also expect complimentary results from AMBER in near future

cleon at high-Q² ronic mass

TERETER A

THE REAL

Thank you

And thank you to many colleagues for input to these slides (JLab Hall A, SBS, and TDIS Collaborations, D. Hamilton (UoG))

INTOUCO

- •Vast hadron structure program at JLab
- •e.g. recent highlights include novel insights into gravitational structure of nucleon
 - •DVCS in Hall B yielded determination of nucleon's energy-momentum tensor via its gravitational form factor, allowing radial pressure and sheer forces on quarks to be extracted
 - •J/psi photo-production in Hall C provided access to gluon gravitational form factors, which hinting that the nucleon's mass radius is smaller than its charge radius
- And much more...

Need High Luminosity

 $R^{T} = \frac{d^{4}\sigma(ep \rightarrow e'Xp')}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \rightarrow e'X)}{dxdQ^{2}} \Delta z \Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z \Delta t$ • Measure ratio of virtual meson tagged to total DIS cross-sections (reduce systematic uncertainties)

 $F_2^T(x,Q^2,z,t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x,Q^2)$

 Tagged signal orders of magnitude smaller than total inclusive DIS signal

- SBS for e' detection
- Multiple Time Projection Chamber (mTPC) for recoil/ spectator tagging
- High luminosity (3 x 10³⁶Hz/ cm²), so high rates
- (hundreds of MHz of background in mTPC region)...

Sullivan Process

Hard scattering from virtual meson cloud of nucleon

