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Objective:
Remote fission reactor monitoring via detection of
antineutrino emissions.

Initial project goal is to observe reactor on/off states at
approximately 10 — 30 km distance from reactor.

Baseline Design:
* Medium size (ktonne-scale fiducial mass) water-
based gadolinium-loaded antineutrino detector

 Technnology demonstration: Initial prototype to
demonstrate monitoring of a single reactor site

* Scalability: Rationale is to develop a detector
design that can be scaled to the Mtonne masses that
are required for larger standoff distances

29 Jan 2020 Matthew Malek
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B Core-collapse supernova emits ~10 J energy

99% is released as neutrinos (all 6 types);
2 mainly from neutrino cooling (also ve from
i neutronisation burst).
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* SRN signal would manifest as distortion of BG
* No such signal seen yet -~ some models ruled out
* Background limitations form significant challenge!

(Totani et l., 1996) (Ando et wl., 2002)
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Gadolinium & Water
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Mark Vagins

versity of California, Irv
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Movember 11, 2002

GADZOOKS! Antineutrino Spectroscopy with Large Water Cerenkov Detectors

John F. Beacom! and Mark R. Vagins®

'NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, [llineis 60510-0500
“Department of Physics and Astronomy, {129 Reines Hall, Unwversity of California, Irvine, CA4 92697
(Dated: 25 September 2003}

We propose modifying large water Cerenkov detectors by the addition of 0.2% gadolinium trichlo-
ride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an
enormous cross section for radiative neutron capture, with 5~ £, = 8 MeV, this would make neu-
trons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence
detection reaction 7 +p — e + n (similarly for #,). Taking Super-Kamickande as a working
example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse
supernova neutrino background, Galactic supernova detection, and other topics are discussed.

PACS numbers: 95.55.Vj, 95.85.Ry, 14.60.Fq FERMILAB-FPub-03,/249-A

Beacom & Vagins, Phys.Rev.Lett. 93:171101 (2004)

~

(Initial motivation for adding Gd to water
Cherenkov detectors was background
reduction for SRN experiments.

Idea has now spread to many other uses,
\for both physics and impact applications/

29 Jan 2020
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Tag antineutrinos via coincidence  « |n ordinary water:
between positron and neutron from
inverse beta decay: Neutron thermalizes, then is

captured on a free proton

Neutron

____________ — Capture time is ~200 usec

Antlneutrlno / - 2.2 MeV gamma emitted
- Detection efficiency @ SK

Proton Gadollnlum (400/0 coverage) is ~20%

Gamma rays

Positron

 When n captured on Gd:

- Capture time ~30 usec

- ~8 MeV gamma cascade
- 4 - 5 MeV visible energy

- > 70% detection efficiency

Cherenkov nght

Cherenkov nght

29 Jan 2020 Matthew Malek 8




Gd Capture X-Sections

Thermal Capture Cross Sections: A Comparison of ENDF/B-V1 to RPI Results*

Thermal Capture Cross Sections
ENDF RFI
Thermal Contribution Thermal Contribution
Isotope Abundance Capture to Elemental Percent Capture to Elemental Percent
152Gd 0.200 1 050 2.10 (0.00430 1050 2.10 0.00430
54Gd 2.18 85.0 .85 0.00379 85.8 1.87 0.00422
1 '5°Gd 14.80 &0 700 8980 184 60200
150 =¥ 3 0,
Gd 2047 | — 1.71 : 0.350 0.000717 1.74 | 100[%] 0.2% Gd2{504}3
| ~'Gd 15.65 254 000 39800 81.6 226000 (~100t for SK)
G 24.84 201 0.499 0.00102 2.19 ttor
10 Gy 21.86 0.765 0.167 0.000342 0.755 - gives 90% neutron
Gd — 48800 1000 ca pture
*The units of all cross sections are barns. The units of abundance are percent. Gd r_‘ﬂ‘pture Eff
60
G. Leinweber et al., Nucl.Sci.Eng. 154:261 (2006)
( - . \ 40
Cross-section for neutron capture is:
e ~49,000 barns for natural Gd
20
* 0.3 barns for H
0

\_

0.1% Gd concentration results in
~90% of neutrons capturing on Gd

J

29 Jan 2020
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The EGADS Facility

EGADS = Evaluating Gadolinium's Action on Detector Systems

Dedicated test facility commissioned
at Kamioka Observatory. =

Super-Kamiokande

EGADS is a: , .
200 tonne R&D project, charged I
with establishing the technical .
viability of loading Gd into water |esaosHan | e
Cherenkov detectors (2500 m"? L —

system

e Uses Gd2[SO4]3 (Gadolinium
Sulphate) at 0.2% concentration

* Facility has its own water
filtration system, 50 cmm PMTs,
DAQ, etc.

29 Jan 2020 Matthew Malek 10




EGADS Facility

Gd Pretreatment 240 PMTs (50 cm ¢)
System

4 )
N.B. 'UDEAL' =

‘Underground Device
Evaluating Attenuation Length'

7

I
|

S.elecfcive Water+Gd 500 ton (6.5m X 6.5m) Transparency
Filtration System water tank (SUS304) Measurement

(UDEAL)

29 Jan 2020 Matthew Malek 11




EGADS Water Attenuation
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What's Past is Prologue! L 25

Upcoming Experiments:
Now that the concept of Gd-loaded water Cherenkov experiments has been
demonstrated and shown to be technically feasible, there are a host of upcoming

experiments that plan to exploit it.

These include.....

[*] “The Tempest”, by William Shakespeare (Act Il, Scene 1)

29 Jan 2020 Matthew Malek 13
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Gd-loaded water

Upstream
u veto

annie
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The ANNIE Experiment

Primary physics objective:
A measurement of the abundance of final state neutrons (“neutron yield”)
from neutrino interactions in water, as a function of energy.

Front 7| electronics
Anti-coincidence [/} [P  racks
Counter 1R
(FACC) ;
Gd-loaded 3 = =]
Current status: water volume |1 ="~ RREERE [ vu0n Range
All PMTs installed A Detector
L~ (MRD)

26 tonne water volume is fully loaded  pnotosensors
with Gadolinium N

MRD completed vV fiiihin
LAPPDs being prepared '

Commissioning w/ beam data NOW

29 Jan 2020 Matthew Malek
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In April 2020, the Super-Kamiokande

»  collaboration will add 0.02% Gd2[SO4]3
. to the detector, opening up a new area
| of physics potential.

Possibilities include:

e Supernova relic neutrinos

* |dentification of modes in a galactic
supernova neutrino burst

e v /v discrimination for
atmospheric and accelerator
neutrinos

* Reduced atmospheric background
for proton decay searches

| The next phase of T2K running will use
- SK-Gd as the far detector.

29 Jan 2020 Matthew Malek
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To recap:

The motivation is clear; loading water Cherenkov neutrinos detectors with
gadolinium brings new life to an old technology.

The technical capability has been demonstrated.

The physics benefit is well-established, with implementation at scales ranging from
26 tonnes (ANNIE) to 50,000 tonnes (Super-K), starting this year, and other
experiments (e.g., WCTE, IWCD) continuing to turn on over the next decade.

That's great... but what about non-proliferation?

29 Jan 2020 Matthew Malek 17
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The WATCHMAN Charge L 215

The goal of the WATCHMAN project is to
harness the techniques described earlier for
nuclear threat reduction.

©eneoy s
The National Nuclear Security Administration

Strate g1C Plan Primary sponsor is the Office of Defense
i Nuclear Nonproliferation (DNN) at the

National Nuclear Security Administration

(NNSA) in the United States.

UK involvement via Ministry of Defence

(MoD) under 1958 US-UK Mutual Defence

Agreement.

Main funding in UK from Science &
Technology Facility Council (STFC) via an
award from the UKRI Fund for International
Collaboration.

29 Jan 2020 Matthew Malek 19
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The goal of the WATCHMAN project is to
harness the techniques described earlier for

Primary Goals:

« Confirm existence of an operating reactor (ie. determine unknown reactor is
operating in presence of another known reactor)

Determine power plant operational status with and without prior knowledge
Demonstrate Gd-loaded water as a scalable detector medium
Enable future technology upgrades:

Water-based liquid scintillator WbLS, Large-Area Picosecond Photodetectors
(LAPPDs), techniques for Cherenkov and scintillation light separation, etc.

Collaboration.

29 Jan 2020 Matthew Malek 20
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Baseline design includes:

e ~1 ktonne fiducial mass

* 0.1% Gd-loaded water

* ~3600 Hamamatsu 10" PMTs with:
* High quantum efficiency (~30%)
* Low radioactivity (esp. U and Th)
* 20% photocathode coverage

 Active veto region (~1 metre)

.....

* Multiple access points:
 Calibration ports
* Large central plug

Cutaway view

29 Jan 2020 Matthew Malek 21
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IOWA STATE
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i
0

rreeere

BERKELEY LAB

Ll eI,
WATCHMAN
COIIaborat|0n & Science & Technology

@ Facilities Council

B ivikroor
« 2 countries (US & UK) * 4 universities (so far):
I Stuiploadivg \ Sheffield, Edinburgh, Liverpool, Warwick
3 US laboratories * STFC-Boulby Underground Lab
2 UK laboratories * Atomic Weapons Establishment
» 125 total collaborators * ~30 total collaborators

* £9.7M funding from STFC
(via UKRI Fund for International Collab.)
& £1M funding from Ministry of Defence

29 Jan 2020 Matthew Malek 22




WATCHMAN Collaboration

BROOKHPAUEN  [OWASTATE
NATIONAL LABORATORY

UNIVERSITY “L
e

The pacifc Northwest
WATCHMAN -
Collaboration

Science & Technology
@ Facilities Council

The WATCHMAN Spokespersons (2016 — 2020):

 Adam Bernstein (Lawrence Livermore National Laboratory)
* Mark Vagins (University of California at Irvine)

and Spokespersons-Elect (2020 - ):

 Adam Bernstein (Lawrence Livermore National Laboratory)
* Matthew Malek (The University of Sheffield)

29 Jan 2020 Matthew Malek 23
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WATCHMAN Site

The ideal WATCHMAN prototype site requires:

(a) an underground laboratory (or potential to build one)
that is within ~30 km of

(b) a nuclear reactor

— This places a significant constraint on the choice of site!

29 Jan 2020 Matthew Malek 25
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Map of US Active Mines
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Potential WATCHMAN Sites| IS

The WATCHMAN prototype site requires:

(a) an underground laboratory (or potential to build one)
that is within ~30 km of

(b) a nuclear reactor

Search results:

— Only one site in the USA satisfies criteria

— Can go to four if allow underwater deployment, or permit
shallow sites with greater backgrounds

— Additionally, another candidate site in UK fits all criteria

29 Jan 2020 Matthew Malek
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STFC / Boulby Underground Lab

Depth:
1100 metres underground

2800 metres water equivalent
10° cosmic ray muon attenuation

Operating lab for > 20 years
Current lab from 2017

JG Boissevain |
Design =3

L ik etk » New cavern needed to accommodate
WATCHMAN (~25m ¢ x ~25m h)

29 Jan 2020 Matthew Malek 29




Proximity to Reactor(s)

Murton

Durham
Heritage Coast

Petarles

Wingate

Hartlepool

Hartlepool Power Station

tillington

Middlesbrough

Thomaby

Coulby

Great Ayton

Stokesley

29 Jan 2020
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Leeds
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Manchester
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Liverpool

«Boulby Underground Laboratory

Danby:

Sleights

Grosmont
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EDF Hartlepool Nuclear Plant

Dual-core reactor complex
Advanced gas-cooled reactors (AGR)
1550 MW_ per reactor core

~26 km standoff from Boulby Lab

Can look for flux difference between 1-core & 2-core operation
Potential for future complementary work with near-field detection

29 Jan 2020 Matthew Malek




Hartlepool Signal @ Boulby

- - Total =— — - Total =——
2 Reactors [l o 250 - Reactors Il
= Closest Reactor = Closest Reactor
> 400 Geoneutrinos > Geoneutrinos
= Uranium — Z 200 Uranium —
T 300 Thorium — " Thorium —
% User Reactor w-. T 150- User Reactor s
c o
T 200- -
W & 100-
o @
o 100 @ 50—
o | | 1 | 1 | . ::I::I o | | I | 1 1 - 1 e
1 2 3 4 5 6 7 8 1 2 3 4 5 3 7 8
Antineutrino Energy E (MeV) Antineutrino Energy E (MeV)
Detector Reactors GeoNu Output puts Detector Reactors GeoNL Output puts
Spectrum Stats 2 Cores Spectrum Stats 1 Core
Inverted Neutrino Mass Ordering Inverted Neutrino Mass Ordering
Riotal = 1602.4 TNU Rigta1 = 928.4 TNU
Rieac = 1567.3 TNU Rreac = 893.3 TNU
Rch[,g[;[ = 6?39 TN |:421 :Jl"llﬂ Uf tl:lta|} Rﬂg:,ggt = BBBS T |::"|1 8 :I.-"Ili:l Df tDtal}
Dejpsest = 26.01 km Dejpsest = 26.02 km

Thanks to Antineutrino Global Map project, there is now an online tool
— Geoneutrinos.org — to get such reactor fluxes (and backgrounds)!
(For more detail, see S.Dye's preprint at )
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Hartlepool Signal @ Boulby
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WATCHMAN Concept

Each fission releases on average
6 antineutrinos

<l
“.<

P \t_h ‘_ ‘. ___.,..--r
n“’ :Iéeis =i "“‘3-‘3

f’;mzasﬁ' 4‘% T Detector
e b L ‘--...____*
“vr’,":i é@

"‘-—..,_‘* .
\—Sj_.); — Y

o

Antineutrinos from a small reactor
~1020 per seco nd APS/Alan Stonebraker

For a 3 GWth reactor complex (e.g., Hartlepool), O(102") fissions
per second, resulting in O(10%?) v_emitted isofropically per second.
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University
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Each fissd
6 antinet

Antineutl

(arbitrary units)

-~~~ Emitted spectrum

----- Cross-section

Detected spectrum

.-..-1 020 p'

Detector

APS/Alan Stonebraker

For a 3 GWth reactor complex (e.g., Hartlepool), O(102") fissions
per second, resulting in O(10%) v_emitted isotropically per second.

— For 26 km standoff, expect “several” events per day per kilotonne
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WATCHMAN Signal

Neutron

Signal is positron annihilation,
followed by ~8 MeV y cascade from
Gd de-excitation ~30 us after.

Gadolinium.:‘
'Gamma—rays 511 keV
\ y ”'E
Positron 511 ke\{___, £y
& Ve i _

Antineutrino
.\
Proton‘

Cherenkov Light %

Cherenkov Light

Experimental signature:
(a) exactly two Cherenkov flashes
(b) occurring within a ~100 us window
(c) and also within a 1m° voxel
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Non-Proliferation Scenarios

Discovery Scenarios (Project Goal 1): ... . | .
) : : o reactor information:
* Case 1: Determine whether any : backgrounds known
reactor is present. : ,
"""""""""" (Discovery scenario)

¢ Case 2: KnOWing that one reactor iS S - Knowledge about one of two reactor cycles:

.i.hackgrounds known

operating, determine that a second E

“wmssmssmass

reactor has turned on. R

E (Discovery scenario)

Knowledge about both reactor cycles:

Verification Scenario: (Project Goal 2)

* Case 3: Confirm operational status |...backgrounds subtracted
with or without prior knowledge e
of both reactor cycles. @ ................. e -
(Verification with or without priors)

Non-proliferation use cases are in development within the collaboration.
These will be further developed in consultation with sponsors and also
with the non-proliferation community.
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Non-Proliferation Scenarios

R e
Two Core: 2.9 - 8.9 Days TP/FP: 95%/9%
One Core: 1.1 - 3.7 Months TP/FP: 94%/7%
2 2.8 - 7.5 Weeks TP/FP: 95%/7%
1.6 - 4.4 Months TP/FP: 99%/1%
3 6 - 17.9 Months 95% Confidence
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Backgrounds sources:
1) Real antineutrinos (e.g., geoneutrinos)
2) Random coincidences
3) Muon-induced high energy neutrons
— Can be measured with MARS
4) Long-lived radionuclide decays
— Can be measured with WATCHBOY

29 Jan 2020 Matthew Malek




BG Study: MARS

MARS = Multiplicity And Recoil Spectrometer

Neutron converter -
3,560 Ibs of lead in a
steel table.

Plastic scintillator
+ GdO2 (1%)
12 layer detectors
(900 Ibs each).

AN

@ Sandia
National
laburatmiesl

* A single fast neutron can produce a multiplicity of particles that can
mimic an antineutrino signal in water
* Muon veto rejects muon-induced neutron production within detector
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MARS Results

Data taken from 2013 — 2015 at KURF
(Kimballton, Virginia)

; 1077 = W 377 M.W.E.
© 3_. i 540 mw. €.
s 8 i 1 = 1450 m.w.e.
< 107 | —¢- f g ¢  Garrison at 265 m.w.e.
O — T ks t ¥  Malgin Scaled at 550 m.w.e.
% - - Mei and Hime at 1450 m.w.e.
~ =
aJ =
;- 1070
X100 e
10—12 = = —""
10—13 _I 1 l 1 | L L l 1 1 1 1 I 1 1 | 1 ] 1 1 | 1 | 1 1 1 1 I 1 1 1 | I 1 1 1 1
50 100 150 200 250 300 350 400

Neutron Energy [MeV]
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BG Study: WATCHBOY

WATCHBOY is a 'mini-WATCHMAN'
("'WATCHMANIno'?) with:

2 tonne target (water + Gd2Cl3)
* 10 tonne veto (pure water)

Built to measure long-lived
radionuclides (e.g., °Li, °He)

Event is tagged with preceeding
muon; allows removal of nearly all
backgrounds due to pile-up from
other muons.

29 Jan 2020 Matthew Malek




WATCHBOY Results

Nuclear Instruments and Methods in Physics
Research Section A: Accelerators,

y [ oL .
; Spectrometers, Detectors and Associated
/ Equipment

il

Volumea B21, 11 Juna 2018, Pages 151-159

)

A search for cosmogenic production of B-neutron emitting

'.a |
[ : 105“5** radionuclides in water
f'" f S 10%: neutron-capture region wﬂa S
18 . = - ﬁb‘" =
' j ey | ) |
= A BT
3 | w\«’f&“a -
. E 10° r('y\' 1'. :
The uncorrelated events are fit [ ¢ ¥ ".i -
o : or more sub-ms '
between 1 MmsS and 2 S. 'E’ 10:____ : ]]| 2nai..ttr«:ms aﬂ':rr muon i
i |
- J‘w'lj [ -
Good agreement between 1k \«J | —— -~
data and expectation! 10¢ 10° 10* 10° 10° 10" 1
time since muon (second)
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Current Status: AIT & NE-1

AIT is the ‘Advanced Instrumentation Testbed’, a new facility at Boulby

Neutrino Experiment One (NE-1 or NEO) is the first experiment that
will be sited in the AIT facility.

. ( Advanced Instrumentation Testbed (AIT) B,
g * AIT is a Multi-purpose, Multi-user Facility
b » NE-1 installation anticipated starting in 2025
/Noutr e \ Commercial
g Neutrino Experiment One (NE-1) Partners
‘g * NE-1is a collaborative Project to design
& and execute an experiment in the AIT NE-1 VS BULKE
o) * NE-1is soliciting ideas from the Engi - National
5 WATCHMAN collaboration and the ngmesig. o Jakoratarias
E broader scientific community to be Focused Sub-
= considered for inclusion in the NE-1 System Teams |- US. & UK
L experiment and experiments to follow e e
= \ ) Universities

<

[ WATCHMAN Collaboration US. & UK. R
. *»  WATCHMAN is an independent scientific Collaboration WATCHMAN u::::::ﬂ
5 Includes several Science and Technology (S&T) Research Working Groups S&T Research
{“ * Plays an important role in generating concepts for the NE-1 experiment and K
g advising/assessing alternatives (technical down-selects, etc.) Working Groups US. & UK.
s \L Some or all members may seek to participate in future experiments in the AIT (NE-n) i )
o=

Today 2024 Time / Experimental Phases 2030 Onward
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Current Status: AIT & NE-1

AIT is the critical path. Mainly consists of DNN and STFC.

NE-1 currently has an open call for ideas, including future upgrades...
and pure science projects that could be sited at the AIT facility.

WATCHMAN
Collaboration
Meeting

January _.?_(J?_(‘.-

NE-1 Eol Submission, Review, and Decision Timeline

Indfependent NE1 Experiment
Review Panel,
: - Focused
Final Option = '
Decision Activity Begins

Fall 2020 Januar y 2021

Preparation

solicitation select

Deadline for Eol Initial for External,
R&D Ideas Eol Idea  Review Independent
Call Open Submission Complete Review
13 December 2019 3 February 2020 Feb - Mar 2020 Fall 2020*
01 03 04 =
MNov Dec Jan Feb Mar Apr ep Oct Mov Dec Jan
CY 2019 : i CY 2020 I CY 2021
:: »! < >! « - :4 | - - - - - -
: Idea formation and | Initial Collaborative analysis and i Independent review | NE-1
technical option down refinement of select technology and selection of Execution

options for NE-1
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- FESA The
. % University
Future IONS L= 8
TS Sheffield.

We are exploring other options for enhanced detection technologies:
Large Area Picosecond Water-based

Photo-Detectors (LAPPDS): Liquid Scintillator (WbLS):

incoming photon

Hydrophilic head

top window -

photocathode (pc) |- pc gap |
mep 1o ffo : -
inter-mcp gap
s AV |
!
Anode readodt .. anode gap

Future goals include enhancing capacity

for non-proliferation as well as science |} i | —

goals like: geoneutrinos, CNO solar v, Ls | 110%] F1% | |, o
2

neutrinoless double-beta decay (0vp), | |wbls, | wbls
and direct detection of dark matter.
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| t | I | t '.‘ o .
Directionality

Other possibilities exist for expanding on the WATCHMAN concept,
like using the elastic scattering events for directionality.

10

Benefits:

— Abillity to distinguish sources when
multiple reactors are present

— Ability to locate a clandestine
reactor that has been found

5.‘-
\
\

\

Cross-section per water molecule (cm?)
\

- 3” I-'ll 5 6“ IT"” IB

— —
- -
= by
un -
‘=’_ -|-|_|J__|__|‘|'L T TTTTT
[ %]
1
[

Directionality enhances the potential

[ ES Signal ]
| ] v -
Eptries 35
of WATCHMAN, but is not necessary . [
{onsta ) S Tss

- - Slopw 4042 |
or tne original charge. s |
S0 P

f L

MNuclear Instruments and Methods in Physics = — _,.-"f
Research Section A: Acceleralors, = ha ’//
Spectrometers, Detectors and Associated :,'__‘ 10 ff"
Equipment = ot
Innuary 2017, Pages 130-138 = ’___,-"
s [
Reconstructing the direction of reactor antineutrinos via 1 /-""
electron scattering in Gd-doped water Cherenkov detectors 1~
. = ',.-",
L

10" = :
-1 -8 06 04 0.2 0 02 04 06 08 |

Reconstructed cos(d)
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Summary

» After ~18 years of extensive R&D, gadolinium loaded water is ready!

 Many experiments about to adopt to enhance physics reach:
— ANNIE, SK-Gd (this year!)

* Application of Antineutrino Physics also relevant for security

— Hope to minimize a source of global catastrophic risk
- Defens/ce agencies are very interested, in strong collaboration with universities

 Advanced Instrumentation Testbed is proceeding at Boulby Underground Lab
« WATCHMAN submitting mulitple options for Neutrino Experiment One

- Variants include enclosing photosensors in optical modules, alternative photosensors (e.g., SiPMs),
techniques to increase light collections (e.g., wavelength shifting plates, retro reflectors, Winston cones)

— Options also being explored for alternative target material (e.g., liquid scintillator, WbLS, 4-MU)

 Significant physics potential for WATCHMAN as well:

- Excellent supernova neutrino detector; UK group is currently designing supernova trigger

- With suitable upgrades, WATCHMAN can be used for reactor neutrino physics, CNO-cycle solar neutrinos,
neutrinoless double beta decay, geoneutrinos... and possibly even direct detection of dark matter!
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Thank you for
listening!
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