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Topics
• Global seismology and Earth structure 
• “Solving” a PDE-informed system by ML 
• Qualifying seismic data by ML



 

Seismic wave propagation in 1D Earth

YouTube channel: Seismology Oxford

Mantle

Outer 
core

Inner 
core

https://www.youtube.com/watch?v=u6-mJ6TCi6o


Seismic wave propagation in 1D Earth

YouTube channel: Seismology Oxford



1D Earth structure
• Discovery of Earth’s inner core 

Inge Lehmann  
(1888–1993)

PKiKP

• Earth’s solid interior is mostly a layered cake 
• Crust: cold and hard, ~25 km on average 

• Mantle: hot and soft, ~2,900 km 

• Outer core: iron-rich fluid, ~2,400 km 

• Inner core: iron–nickel alloy, ~1,250 km



3D Earth structure
• A 1D Earth is dead, but our Earth is quite alive 

• Earth’s structure must be 3D, though rather weak  

• Plate tectonics and volcanism are the surface expressions of mantle convection

Illustration by Byrd Polar Research Center



Seismic wave propagation in 3D Earth

YouTube channel: Seismology Oxford

“LLSVP”



Seismic wave propagation in 3D Earth

Grand Prize of ARCHER Video Competition (Leng & Fernando, 2020)



Forward modelling and inversion 

3D Earth model

La Reunion Plume (Tsekhmistrenko, 2019)

Waveform data

d = ℱ(m)
Forward modelling

Inversion (MAP)
m = argmax

m
P(m |d)
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Simulator & Emulator
SIMULATOR
d = ℱ(m)

Finite element mesh (GLVis)

DATA 
mtrain ⊃ mneed

EMULATOR
d ≈ F(w; m)

CNN for CDF (Guo et al., 2016)

ML

Simulator CNN emulator (x100 faster) Error

CNN-predicted velocity fields with different obstacles (Guo et al., 2016)



End-to-end emulator
• Acoustic wave modelling (Moseley et al., 2019)

Earth model Wavefield by FD 
(wave physics) Seismograms at receivers

SIMULATOR

EMULATOR

Conditional autoencoder architecture WaveNet

• x100 faster 
• 18 million network 

parameters 
• trained with 

600,000 
simulations



Neural architecture search

• Fast (104~109 speedup)  
• Using limited training data 

by letting the architecture capture 
the “prior” in the physics

DENSE 
(Kasim et al., 2020)

EMULATOR with 
architecture variability  

d ≈ F(n; w; m)
授⼈人以“⿂魚”不不如授之以“漁”



• Seismic tomographic of Shatsky Rise (Korenaga & Sager, 2012)

OBS data

Model 

DENSE with x108 ?

Neural architecture search



Problems with end-to-end emulators
• Interpretability (out-of-sample data)

• Accuracy (Probably Approximately Correct, PAC)

• Complete solution of PDE

m ≥
1
ϵ (ln ℋ + ln

1
δ )

: minimum number of data 
: upper bound of true error 

: size of hypothesis space 
: confidence

m
ϵ
ℋ
1 − δ



Prior in physics
• How ML works

Prior 
= 

Sparsity

Understanding sparsity 
in physics is the key to 
build interpretable and 
accurate emulators.

• Easy to emulate 
• Prior: 

d ↑ ⇔ p ↑ , Em ↑ , Ep ↓

• Planetary impact: d = d(p, Em, Ep)
Em

Ep

p = mv

d

• Difficult to simulate

Agbaglah et al., 2011

m ≥
1
ϵ (ln ℋ+ln

1
δ )



Source-centred system

A vertical impact

 — azimuthϕ

AxiSEM3D: azimuthal sparsity

Leng et al. 2016



Wavefield in 1D Earth

Equatorial cut
Slice cut

Model: PREM 
We can solve it on ONE slice: 
3D problem reduced to 2D



Model: S40RTS 

Wavefield in 3D Earth

Equatorial cut
Slice cut

Wavefield becomes non-axisymmetric, 
but remains smooth along azimuth 



Wavefield in 1D Earth

Equatorial cut
Slice cut

Model: PREM 



Model: S40RTS 

Wavefield in 3D Earth

Equatorial cut
Slice cut



Fourier characterisation of solution: u(s, θ, z)

• “N” can be locally adapted to wavefield complexity 
• Substantially decreases n-DOFs based on a sparsity in wave physics 
• x100~1,000 speedup for Earth, Mars (Insight mission), Moon and asteroids

3D mesh

AxiSEM3D
= ∑

|α|<N(s,z)

uα(s, z)eiαϕ
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• N-field is the most elusive part of the wave scattering physics 
• Difficult (impossible) to derive from the theory

Wavefield learning

Size

Model 
End

N-field 
Model

N-field 
Wave

Wave 
End

MLFFT SEM
• We leave only this part to ML



• Interpretable: N-field has a clear physical meaning 
• Accuracy 

- N-field by ML dose not have to be accurate or optimal 
- Error can be evaluated at low-cost end 

• Full spatial-temporal solution (N-field is static)

Wavefield learning

Leng et al. 2019



2D inference in model-frequency space

✔ Simple model 
✔ Low frequency 

(laptop)

✖ Complex model 
✔ Low frequency 

(small HPC)

✔ Simple model 
✖ High frequency 

(small HPC)

✖ Complex model 
✖ High frequency 

(large HPC)

• Extrapolation is via the N-fields rather than wavefields 
• Maximally keeping the wave physics (interpretability)



• The first mission to explore Mars’ deep interior 
• Extremely limited observations 
• Poorly constrained source and structure 
• Seismograms are dissimilar to Earth’s

NASA’s InSight Mission

Lander

Panning et al. 2020

First event detected



NASA’s InSight Mission
• Mars Model

Radial model

Scatterer model

Topography

VS
Insight

Tharsis Rise

Hellas Basin

Olympus Mons



NASA’s InSight Mission
• N-field for surface waves 
• Increased near the surface because of strong scattering 
• The large interior is much less affected



A reference model



Smaller scatterers



Larger scatterers



Summary
• Using ML as an end-to-end blackbox causes low 

interpretability and difficulty in accuracy evaluation 
• Better to identify any sparsity in the physics and 

built it into the network as a prior

m ≥
1
ϵ (ln ℋ+ln

1
δ ) Prior 

= 
Sparsity
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Seismic data
• Seismology is a physics-driven data science 

• Teleseismic data is noisy with diverse noise patterns 
(scattered wave is one of them, careful with denoising) 

• Data qualification:  

• Previous ML-based approaches (SVM, GAN…) for 
seismic data is based on hand-labelled training data 

• Limited number of training data (3 months for 10,000 data) 

• Subjective, probably biased 

• Undefined uncertainty

d = argmax
d

P(d |m0)



Our data

LLSVP

ULVZ

SPdKSSKS

• Ultra-Low Velocity Zone (ULVZ) and SKS-SPdKS

Thorne et al, 2013

Large  
Low  
Shear  
Velocity  
Province



Our data
• SKS-SPdKS dataset

Fairly Bad

Bad

Bad

Bad

Fairly Bad

Good

Good

Good

Bad

Fairly good

Synthetics                Data



Methods
• Traditional, non-ML (still subjective, satisfaction ~70%) 

• Active noise (satisfaction ~80%, strong overfitting) 
• The machine quickly learns the synthetic noise patterns (satisfaction 96% for 

synthetic noise data) 

• Variational autoencoder (ongoing, satisfaction ~100% for “good”)



Variational autoencoder (VAE)

• Use the same data for input and output during training 

• VAE can find the sparsity in data (principal components) 

• Can be used for image compression and denoising 

• If a test datum resembles the training dataset, it should be highly 
reconstructable: we may use pure synthetic data for training 



Variational autoencoder (VAE)
Conv and pooling TransConv and unpooling

64642561024 32 64 256 1024
Synthetic data Synthetic data

• A GOOD one

• VAE network



Variational autoencoder (VAE)
• BAD ones

• One from BAD to GOOD

✔

✕

✔?



Thank you!


