
Continuous Improvement 
and Constructive Criticism

For Software Professionals



Disclaimer

• This is based on my understanding of the subject
• Some of the content might be obvious to some
• There will be some oversimplifications involved
• Happy to receive questions and feedback during the talk



Natural language is awful to communicate



Natural language is awful to communicate

It’s ambiguous 
and dependent 
on the context



Natural language is awful to communicate

It’s ambiguous 
and dependent 
on the context

•Awful – Literally "full of 

awe", originally meant 

"inspiring wonder (or fear)", 

hence "impressive". In 

contemporary usage, the 

word means "extremely bad".

The meaning 
changes with 
time



Natural language is awful to communicate

It’s ambiguous 
and dependent 
on the context

•Awful – Literally "full of 

awe", originally meant 

"inspiring wonder (or fear)", 

hence "impressive". In 

contemporary usage, the 

word means "extremely bad".

The meaning 
changes with 
time

https://www.bbc.co.uk/news/uk-41266000

Some words get lost with time

"Snout-fair", for example, means 
"having a fair countenance; fair-faced, 
comely, handsome", while 
"sillytonian" refers to "a silly or 
gullible person, esp one considered as 
belonging to a notional sect of such 
people".



Natural language is awful to communicate



But computers do exactly 
what you tell them to!



But computers do exactly 
what you tell them to!

Do they?



A simple program



A simple program

This is a user defined module – could be different for each system 



A simple program

This is a dependency – functions defined here could change with newer versions 



A simple program

In fact, this function has been deprecated since python 3.3 and was removed in 3.8



And this is without getting into kernel/OS 
limit overrides, hardware interactions, poor 

documentation or user inputs…



So what can we do?



I find it useful to break it down into 3:

WHY

WHAT

HOW



I find it useful to break it down into 3:

WHY

WHAT

HOW

Why was this made? Who does this affect? 
What are the current circumstances?



I find it useful to break it down into 3:

WHY

WHAT

HOW

What’s the core task this is doing?

Why was this made? Who does this affect? 
What are the current circumstances?



I find it useful to break it down into 3:

WHY

WHAT

HOW

What’s the core task this is doing?

What’s the specific implementation of it?

Why was this made? Who does this affect? 
What are the current circumstances?



WHY – why was this made?

The motivation for this software or section of software
Is there some historic/political/legal background
What is it trying to do/fix?



WHY – who does this affect?

stakeholders include: 
• users 
• admins 
• contributors
of this software.
Ideally if a change does not affect a group, it should be invisible to 
them, as this mean 



WHY – what are the current circumstances?

Any external factors affecting this software, e.g.
• Hardware capability
• Usage intensity
• Operational costs
• Available effort
• Running costs



WHAT – what’s the core task this is 
addressing
• Try to keep it as detached to the 

implementation / technical details as 
possible. This should be understandable by 
all stakeholders.

• E.g. a way to transfer data between two 
endpoints

• Sometimes a WHEN, WHERE or WHO 
might be part of this, e.g. if the task is time 
critical or needs to fit a pre-existing 
specification.
• E.g. a way to sustain 100Gb/s of data 

between all sites part of the CERN 
collaboration



HOW – what’s the specific implementation of 
this task
• The implementation doesn’t have to be technical
• Depending on the situation, this could be addressed as:

• A technical problem, e.g. by implementing interfaces to all supported 
technologies involved,

• A policy issue, e.g. by agreeing on all sites using the same technology stack
• Or a combination of both

• There may be valid reasons to pursue either approach
• This WILL change with time, either 

trough improvements or new feature,
or by obsolescence of programming 
languages or dependencies



Sometimes, the WHAT and the WHY change…

• New communities join in
• A software finds an unexpected use in a different field
• Scope creep…



Constructive Criticism
• This is not about micro-

optimization
• Often the best solution is not 

feasible in the circumstances
• E.g. technical debt mean the effort 

involved is higher than can be given 
for this priority

• If you have a method you think 
would work, you can propose it, 
but it’s up to the actioner if they 
want to do it that way or a different 
way. 

• This can be used to have a critical 
look at your own work too



Continuous Improvement



Continuous Improvement
Is a series of implemented Constructive Criticisms



Thank You
Any feedback/questions?


	Slide 1: Continuous Improvement and Constructive Criticism
	Slide 2: Disclaimer
	Slide 3: Natural language is awful to communicate
	Slide 4: Natural language is awful to communicate
	Slide 5: Natural language is awful to communicate
	Slide 6: Natural language is awful to communicate
	Slide 7: Natural language is awful to communicate
	Slide 8: But computers do exactly what you tell them to!
	Slide 9: But computers do exactly what you tell them to!
	Slide 10: A simple program
	Slide 11: A simple program
	Slide 12: A simple program
	Slide 13: A simple program
	Slide 14: And this is without getting into kernel/OS limit overrides, hardware interactions, poor documentation or user inputs…
	Slide 15: So what can we do?
	Slide 16: I find it useful to break it down into 3:
	Slide 17: I find it useful to break it down into 3:
	Slide 18: I find it useful to break it down into 3:
	Slide 19: I find it useful to break it down into 3:
	Slide 20: WHY – why was this made?
	Slide 21: WHY – who does this affect?
	Slide 22: WHY – what are the current circumstances?
	Slide 23: WHAT – what’s the core task this is addressing
	Slide 24: HOW – what’s the specific implementation of this task
	Slide 25: Sometimes, the WHAT and the WHY change…
	Slide 26: Constructive Criticism
	Slide 27: Continuous Improvement
	Slide 28: Continuous Improvement
	Slide 29: Thank You

