LhARA: Stage 1 and FFA Injection Line

William Shields

(william.shields@rhul.ac.uk)

LhARA FFA Review Meeting

26th February 2025

LhARA: Layout

- Stage 1: Laser target acceleration, 15 MeV protons, 1 in-vitro end station
- Stage 2: FFA acceleration, up to 127 MeV protons, 1 in-vitro end station, 1 in-vivo end station.

LhARA: Layout

- Stage 1: 15 MeV protons, 1 in-vitro end station
 - End station spot size flexibiliy
- Stage 2: Up to 127 MeV protons, 1 in-vitro end station, 1 in-vivo end station.

LhARA: Layout

- Stage 1: 15 MeV protons, 1 in-vitro end station

- Stage 2: Up to 127 MeV protons, 1 in-vitro end station, 1 in-vivo end station.

Stage 1: Layout

- Locations and key dimensions defined :
 - Gabor lens
 - Arc magnets
 - RF cavities
 - Collimators
 - Corrector magnets
 - Vacuum valves
 - Wall current monitors

- Profile monitors
- Shielding walls
- Radiation shutters
- Octupole
- Beam dump
- Stage 2 switching magnet

ROYAL HOLLOWAY

Parameterised Source Distribution

Lister-hybrid Accelerator for Badiolological Applications

- LhARALinearOptics
 - K. Long, M. Maxouti, N. Dover
 - Optics, losses, particle source
- Angular distribution generated as a cone centred on the normal to the foil surface.
 - The opening angle of the cone taken from:

$$\sigma_{\theta_S}(E) = 20^\circ - 15^\circ \frac{E}{E_{max}}$$

- Low KE angle taken to be 20°, linearly decreases such that angle at E_{max} is 5° (based on [1]).
- The distribution of the polar angle, $\boldsymbol{\theta}_{s}$, approximated as Gaussian
- 11° at 15 MeV (25 MeV E_{max})

Laser-typ/tid Accelerator for Eaderbloidigical Applications

- KE spectrum from [2], unable to predict cut-off KE:

$$\frac{dN}{dE} = \frac{n_{e0}c_s t_{laser} S_{sheath}}{\sqrt{2ET_e}} \exp\left(-\sqrt{\frac{2E}{T_e}}\right)$$

--2 --

- Model in [3] has cut off given by:

$$E_{max} = X^2 E_{i,\infty}$$

$$\frac{t_{laser}}{t_0} = X \left(1 + \frac{1}{2} \frac{1}{1 - X^2} \right) + \frac{1}{4} \ln \left(\frac{1 + X}{1 - X} \right)$$

- Probability of particle generated in E -> E+dE:

$$\delta \mathcal{P} = g(E) \,\delta E \qquad g(E) = \frac{1}{\mathcal{N}} \frac{dN}{dE}$$

$$G(E) = \int_{E_{\min}}^{E_{\max}} g(E) dE$$

$$G(E) = \frac{2}{\mathcal{N}} \frac{n_{e0}c_s t_{laser} S_{sheath}}{\sqrt{2T_e}} \sqrt{\frac{T_e}{2}} \left[\exp\left(-\sqrt{\frac{2E_{\min}}{T_e}}\right) - \exp\left(-\sqrt{\frac{2E}{T_e}}\right) \right]$$

$$E = \left[\sqrt{E_{\min}} - \sqrt{\frac{T_e}{2}} \ln\left(1 - \frac{G(E)}{G(E_{\max})}\right) \right]^2$$

[2] J. Fuchs, P. Antici, et al.," Nature Physics 2 (01, 2006)
[3] J. Schreiber, F. Bell, et al., Physical review letters 97 (08, 2006) 045005 7

Parameter	Definition	Value	\mathbf{Unit}
E_{laser}	Laser energy	10	J
I	Laser intensity	$9 imes 10^{20}$	W/cm^2
λ	Laser wavelength	0.8	$\mu { m m}$
t_{laser}	Laser pulse duration	$< 5 imes 10^{-14}$	s
r_0	Laser spot radius	4.0	$\mu { m m}$
d	Target thickness	$400 - 600 \times 10^{-9}$	m
heta	Half angle divergence	0.436	rad
P_{laser}	Laser power	$1.0 imes10^{14}$	W
E_{min}	Minimum energy	1.0	MeV

Stage 1 Nozzle

- Methodology:
 - Generate 15 MeV \pm 2% beam (LhARALinearOptics)
 - Track 5cm assuming a charge neutral beam.
 - 2mm radial filter
 - Track 5cm with space charge
 - 2.87mm radial filter

Transmission (%)	Nozzle Entrance	Nozzle Exit
OSIRIS SCAPA Simulation,	88.7	68.0
Parameterised Beam, $\theta_s = 11^\circ$	7.9	4.1
Parameterised Beam, θ _s = 2.75°	87.5	55.9

Beam Property	OSIRIS SCAP	A Simulation	Parameter θ _s =	ised Beam, 11°	Parameter θ _s = 2	ised Beam, 2.75°
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
TWISS α	-199	-209	-355	-357	-341	-342
TWISS β (m)	19.65	20.60	35.35	35.51	33.89	33.93
Emittance (m rad)	8.53e-08	8.11e-08	5.91e-8	5.87e-8	5.77e-8	5.75e-8
Beam Size (m)	1.28e-03	1.28e-03	1.43e-3	1.43e-3	1.39e-3	1.40e-3

ROYAL HOLLOWAY

- Final 15 MeV ± 2% beam for particle tracking simulations
- Small differences observed with change in bunch charge (% level).

Stage 1: Capture and Energy Selection

Solenoid (%)	SCAPA Simul	OSIRIS ation	Theta	S = 11	Theta S	5 = 2.75
	KS (m⁻¹)	B (T)	KS (m ⁻¹)	B (T)	KS (m ⁻¹)	B (T)
GL1	2.4917	1.4	2.4917	1.4	2.4917	1.4
GL2	1.0187	0.5724	1.0168	0.5713	1.0175	0.5717
GL3	1.4485	0.8138	1.4486	0.8139	1.4486	0.8139

- Spherical and chromatic aberrations.

14.8 15.0 15.2 Kinetic Energy (MeV)

Stage 1 Emittance

- Emittance control in rf cavities and solenoids, PRSTAB 12, 024210 (2009).
 - DOI: <u>10.1103/PhysRevSTAB.12.024201</u>
- LINAC4
 - Comparable beam sizes to LhARA; 6.4 mm radius (rms).
 - Space charge negligible, kinetic energy (95 KeV), energy spread 0.25%.
- <u>"The higher the beam</u> <u>divergence at the entrance</u> <u>of a solenoid, the higher the</u> <u>emittance increase".</u>
- Highest LhARA solenoid field: 1.4T.

FIG. 8. (Color) Increase of emittance in solenoidal channels, B = 0.6 T. Top: initial emittance 8.0π mm mrad. Bottom: initial emittance 4.5π mm mrad.

FIG. 9. (Color) Increase of emittance in solenoidal channels, B = 0.36 T. Top: initial emittance 8.0π mm mrad. Bottom: initial emittance 4.5π mm mrad.

- Ongoing investigation.

Stage 1 Optics for Stage 2 Injection

- Laser-hydrid Accelerator for Radiobiological Applications
- Challenges meeting baseline injection line beam parameters
 - At switching dipole: $\epsilon_{x,y}$ ~**4.3e-6**, $\beta_{x,y}$ ~25m, $\sigma_{x,y}$ ~ 1.00 cm.
- Solutions prioritise $\alpha_{x,y} = 0$.

Solution	Solenoid 4 B Field (T)	Solenoid 5 B Field (T)	Solenoid 6 B Field (T)	Solenoid 7 B Field (T)
1	1.0719	0.8482	0.7448	0.4998
2	1.0976	0	0	0.1176

Nominal Injection Line Model

		G	ÐE
		- ;	10 -8
Beam Parameter	Switching Dipole Entrance	Injection Septum Exit	Unit
β_{\times}	25.08	0.622	m
β _y	26.45	1.819	m
α_{\times}	0	0.074	
α_{y}	0	-0.963	
D _x	0	0.392	m
		_	_
-		•••••	

Nominal Injection Line Optics

Optimised Injection Line Optics

Injection line is flexible, handles alternative initial conditions. —

Injection Line Collimation

ROYAL HOLLOWAY

- 1) 0.4m between dipoles 2 & 3 (in stage 1 room)
- 2) 0.6m between dipole 4 & downstream quadrupole.
- 3) 0.4m between dipoles 6 & 7.

Modelling in GPT (Space Charge)

Laser-hybrid Accelerator (* Radiobiological Applications

- Emittance growth seen in Stage 1 beam transport.

- Injection line shown to be flexible.

- Impact of space charge is ongoing.

