Imperial College London

LhARA-FFA Design

J. Pasternak, IC/RAL-STFC, 26/02/2025

Introduction

- Why FFA?
 - Synchrotron can do the job, but we learn nothing new
 - FFA is upgradable to 100Hz or more
- What LhARA FFA is good for?
 - The most economic solution for variable energy FFA in the range of energies required for radiobiology (upgradable to proton therapy)
- What LhARA FFA provides
 - Novel concept for magnet
 - Variable energy, multi-ion capable, high rep rate machine
 - Next step in developing FFA for hadron therapy

Energy Variability using Laser Accelerated Ions

Variable extraction energy from FFA within 1 s (20-127.4 MeV) at fixed geometry

+

pulse by pulse variation with kicker could be implemented

Design Principles

- LhARA-FFA design follows from the RACCAM design
- Single spiral scaling FFA
 - Single magnet per cell, compact (no negative bends), zero-chromatic, strong focusing
- Choice of cell number -> a compromise between the orbit excursion and the drift length
- Magnet packing factor -> a compromise between the size of the machine and the orbit excursion
- Max field (~1.4T) fixed to allow for room temperature magnets with controllable saturation
- Magnet design based on distributed trim coils -> allows for tunability
 - Essential for a variable energy operation
 - Synergy with FETS-FFA

LhARA- FFA Design

units	value
	10
	5.23
degrees	53.9
m	2.914
m	3.477
m	4.61064
Т	1.405
m	0.56
m	1.2
m	1.43
	0.34
degrees	12.24
\mathbf{cm}	9.5
Tm	0.562
Tm	1.685
	(2.79, 1.22)
	2.516
MHz	1.46-6.48
	1,2 or 4
kV	4 (for 2 cavities)
	units degrees m m T m T m m degrees cm Tm Tm Tm Tm MHz kV

Betatron functions (red-H and blue-V) and dispersion (green) in one lattice cell (using the hardedge model)

LhARA- FFA Tunes evolution

DA Study

Parameter	unit	value
Beam energy	MeV	15
Total relative energy spread		$\pm 2\%$
Nominal physical RMS emittance (both planes)	$\pi\mathrm{mrad}$	2.8×10^{-6}
Incoherent space charge tune shift		-0.14
Bunching factor		0.023
Total bunch length	ns	8.1
Beam intensity		10^{9}

Dynamical acceptance study using 3D field map by tracking 100 turns at 25 MeV. 1σ , 2σ , 3σ , and DA limits are shown in both transverse planes, (left) horizontal and (right) vertical, respectively. Note that 1σ emittance corresponds to 2.8 Pi mm mrad.

RF

- Two potential solutions, MA and ferrite loaded
- One reference created for RACCAM (MA)

Parameters for RACCAM

	Cavity	
Number of gaps	1	MA cor
Peak rf voltage	3 kV	
Size of cavity	2.0 m x 1.2 m x 0.2 m	
Size of core	1.7 m x 1.0 m x 0.03 m	_ /
Aperture of core	1.0 m x 0.3 m	_ / /
Q	0.6	
Power density in core	< 0.5 W/cc	
	Amplifier	– C. Ohmori e
Output power	25.0 kW	TU5PFP026
Operation class	Class AB	
Plate voltage	6 kV	
Anode Current	10 A	
Tetrode	RS1084CJ	

et al.,PAC'09,	Parameter	Value
6	Proton RF frequency	$2.89{-}6.48\mathrm{MHz}$
	Voltage per cavity	$4 \mathrm{kV}$
	Bunch intensity	10^9 protons/bunch
	Harmonic number	1
Parameters	Horizontal aperture	$6585\mathrm{cm}$
for LhARA	Vertical aperture	$7 \mathrm{cm}$ (approx.)

RACCAM RF cavity in LhARA

	• •	/	
In	lection	/extractio	r
•••			1

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3.1
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	0.93
magnetic length	m	0.9
deflection angle	degrees	28.5
thickness	cm	1
full gap	cm	2.2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	\mathbf{ns}	320
flat top duration	\mathbf{ns}	25
full gap	cm	3.1
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	\mathbf{ns}	110
flat top duration	ns	40
full gap	cm	2.2

Diagnostics

- Beam loss: plastic scintillators or photomultiplier tubes
- Beam position: beam scrapers, intercepting wires, electromagnetic pickups
- Current: Faraday cups, electromagnetic pickups
- Tune: electromagnetic pickups
 - With RF knock-out for the horizontal plane
 - With exciter in the vertical plane
- All above methods have been demonstrated for synchrotrons/FFAs, but no dedicated study for LhARA has been performed so far

Conclusions

- LhARA at Stage 2 requires a variable energy FFA
- The cost effective, single spiral scaling FFA chosen for the baseline shows a good performance in tracking studies and promissing feasibility
- Preliminary design for the magnet has been created (see Ta-Jen's talk)
 - Key is the zero-chromaticity for different energies which is now demonstrated

Future LhARA-FFA programme (1)

- Transverse optics and beam dynamics
 - Alternative working points (for example for the slow extraction)
 - Error study
 - More DA evaluations
- Longitudinal dynamics
 - RF programme
 - Bunch length manipulation
 - Acceleration with tilted cavity
- Space charge
 - Condition at injection
 - Bunch evolution after injection

Future LhARA-FFA programme (2)

- Main FFA magnet
 - Further optimization
 - Straight trim coils option
- RF
 - Evaluation of potential options
 - MA cavity parameters (RACCAM design a starting point)
 - MA cavity e-m simulations
- Injection/extraction
 - C-shape kicker parameters
 - Kicker e-m simulations
 - Septa?

Future LhARA-FFA programme (2)

- Diagnostics
 - Collaboration with RAL
- Mechanical engineering
 - Transitions between various elements under tight space constrains
 - Further work is needed