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● 1400 collaborators from 200 global institutions

● Liquid Argon Time Projection Chamber Detectors
○ Unprecedented event reconstruction for a Far Detector

● Unique sensitivity to answer those Big Questions 
with a single experiment:
○ Unambiguous mass hierarchy measurement in a few years
○ Ultimate sensitivity to measure CPV-generating parameter

● Rich physics program beyond long baseline 
oscillations:
○ Solar, SuperNova Core Collapse, Geo-, Sterile Neutrinos

The Deep Underground Neutrino Experiment

PPD Project 1 DUNE
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● Hardware:
○ Far Detector Module 1 Readout 

Hardware
○ Proton Accelerator Components
○ Neutrino Beam Targetry
○ DUNE Phase-II Near and Far 

Detector R&D

DUNE in the UK

PPD Project 1 DUNE

● Software:
○ Data Acquisition Software
○ Neutrino Interaction Simulations
○ Near and Far Detector Simulation and Reconstruction

● Analysis:
○ Beam + Atmospheric Long Baseline Oscillations
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Oscillated FD
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○ Few-GeV neutrino–nucleus interactions particularly hard to model
○ Have to use Near Detector ND) to learn as much as we can about neutrino interactions. 
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we cannot blindly apply constraints from ND to FD

E𝝼 ??

Ee

Ep? E??

Eneutral?
Simulated DUNE 𝝼e interaction

This Project and DUNEPRISM asks: Can we 
configure the near detector so that we can 
learn about the finer structure in situ with a 
reduced dependence on precise modelling?
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Neutrino Beams
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Proton beam

Fixed target π+

● Proton beam strikes a fixed target producing secondary hadrons: mostly 
pions and kaons

π-

π+
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Neutrino Beams
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Neutrino mode, focussing positive particles

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+

● Proton beam strikes a fixed target producing secondary hadrons: mostly 
pions and kaons

● These are sign-selected and focussed by one or more magnetic horns.

● This secondary beam of particles decays to produce neutrinos.
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Neutrino Beams
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● Proton beam strikes a fixed target producing secondary hadrons: mostly 
pions and kaons

● These are sign-selected and focussed by one or more magnetic horns.

● This secondary beam of particles decays to produce neutrinos.

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

Anti-neutrino mode, focussing negative particles

𝛍-

𝛎

'cables' supplying 
300 kA  to NuMI horn

Credit Reidar Hahn

The intensity frontier
● > 1 MW beam power
● 1014 Protons per spill
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28.5 m

𝛎

𝛎
𝛎

𝛎

𝛎
𝛎

100 Ton Liquid Argon ND on rails!

Exposed to different neutrino energy spectra 
as it is moved out of the centre of the beam
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New Capability: First time we will have been able to smoothly vary 
the neutrino energy spectrum of an experiment
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Study how best to use PRISM information to maximise DUNE Long Baseline 
Physics Reach

You will develop oscillation analysis software infrastructure that will form the 
basis for early DUNE flagship measurements

Opportunities to:
● Bring state-of-the-art parameter inference techniques to bare on fundamental 

physics problems
● Work with realistic detector simulation/reconstruction to study impact of detector 

performance on DUNE physics
● Use existing neutrino scattering data to demonstrate PRISM insensitivity to 

plausible variations of the neutrino interaction model

This Project

PPD Project 1 DUNE
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● Convenes DUNE Long Baseline Physics Group
● Convenes T2K Neutrino Interactions Group
● Develops neutrino interaction simulations and 

neutrino scattering data comparison tools

Supervisors

PPD Project 1 DUNE

● NOvA Analysis Coordinator
● Convenes DUNE Near Detector 

Simulation/Reconstruction Group
● Interest in neutrino interactions and neutrino 

oscillation measurements
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Oct 25  Jan 26 University of London Particle Physics Course
Feb - Sept 26 Near Detector Simulation/Reconstruction Work

October 26  Sept 27 Oscillation Analysis Development

Oct 27  Mar 28 FNAL/UMN Experience Midwestern winter & 
Work on PRISM movement prototype

Apr 28  Dec 28 PRISM Analysis Studies
Jan - Mar 29 Write-up and Defend

PhD Example Timeline

PPD Project 1 DUNE

LTA 6m

RAL 1yr

RAL 1yr

QMUL 
1yr

Gainful Onward Employment!
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● Tiny weak force cross sections combined with colossal detectors and 
ludicrously intense (anti)neutrino beams result in large, clean event 
samples to do physics with!

● Neutrino oscillations are the only confirmed probe of BSM phenomenon
○ We pretty much know from T2K/NOvA data that we will learn new things about 

fundamental symmetries from DUNE/Hyper-K
■ Strong CPV in neutrino oscillations?
■ Normal or inverted neutrino mass ordering?
■ 𝞶23 mixing still consistent with maximal?

○ Now we get to measure them!

● Collaborations are small enough that individual students and RAs have a 
chance to have an outsized impact on some of the biggest known 
unknowns in particle physics

Why I Love Working With Neutrinos

PPD Project 1 DUNE
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Backups



L. Pickering   42

Split into two phases

● Phase I: 
○ 5σ Mass ordering measurement independent of 

other mixing parameters
○ Exclude CP conservation at 3σ for true 𝝳CP = ±π

● Phase II 
○ Measure 𝝳CP 
○ Exclude CP conservation at:

■ > 3σ for 75% of 𝝳CP values
■ > 5σ for 50% of 𝝳CP values

○ Precision constraint of PMNS mixing
○ Non-unitarity searches including tau appearance 

channel

DUNE LBL Physics Goals

Phase I Phase II
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FD 'Data'

Predicting Oscillations with the Near Detector

PRISM
On-axis ND

Oscillation Programme Overview


