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Recall - Hill’s Equation and Solutions

Piecewise Solution Courant-Snyder Solution



The beta function
The beta function is a central quantity in the Courant-Synder formalism

It is a positive function of position in the machine, and has the same periodicity 
as the lattice itself.

It is determined only by the focusing properties of the lattice.

It is maximised in a focusing quadrupole and minimized in a defocusing 
quadrupole.

Below is a typical example from a transfer line at the g-2 experiment at Fermilab 
showing “betatron oscillations”.
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Below is a typical example from a transfer line at the g-2 experiment at Fermilab 
showing “betatron oscillations”. Note that there is a 

horizontal beta 
function and a 
vertical beta 
function.



The beta functions of the LHC



Can we write a general transfer matrix between any two points in 
terms of the ‘lattice functions’? 
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Can we write a general transfer matrix between any two points in terms of the 
lattice functions? To begin with, we return to the Courant-Snyder form of the 
solution to Hill’s equation, but written slightly differently

where c1 and c2 are constants yet to be determined. If we define the initial 
conditions at the point ‘0’ to be

and write the initial particle coordinates to be x0 and x0’ then we can fix the 
unknown constants.

We also need to recall
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functions / lattice functions
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The transfer matrix in terms of the Courant-Snyder 
parameters  / functions / lattice functions
As in the piecewise solutions, we see the expression for x(s) is linear in 
x0 and x0’.

Taking the derivative of this expression, we can cast this equation 
into a convenient matrix form (as it’s linear)

where



The transfer matrix in terms of the Courant-Snyder 
parameters  / functions / lattice functions

where

The subscripts 0 and 1 refer to the beginning and end of the transfer 
map.

This means the transfer matrix between two points is purely 
determined by the lattice functions at each point and the phase 
advance between the points!



The one-turn map

The one turn (one period) map is a very useful quantity (we 
mentioned it previously for piece-wise solutions to Hill’s equation). 

The map for one turn of the ring means we come back to the same 
s position, and so

And so the one turn map is

and the phase advance for one turn is: 

where we have used



The one-turn map

If we know this map we can determine the lattice functions. 



The one-turn map

If we know this map we can determine the lattice functions. 

We can multiply all the piece-wise matrices for all the elements in 
the ring together to obtain the total matrix for one turn of the 
machine

which we can compare with



The one-turn map

We now have

We can get the one-turn phase from the trace of this matrix! 

We can get the lattice function from the other matrix elements.

Note for the phase advance to be real-valued and hence 
stable, we need
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The one-turn map at a different location

If we know the one-turn map at one location, s, is there a way to 
calculate it at another location,  s’, provided we know the transfer 
matrix M for s to s’?

The answer is yes. They are related to each other by the similarity 
transform

Similarity transforms come from matrix theory. They preserve 
eigenvalues, traces, etc.

We’ll now denote the matrix M(s’|s) (i.e. the map from s to s’) by 

(redefining m11, etc). Let’s use this to calculate how the 
lattice functions transform from place to place if we 
know the transfer matrix.



The transformation of the lattice functions

Starting with the similarity transform, 

We can express the one-turn maps in terms of the lattice functions 
at the locations s and s’
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The transformation of the lattice functions

Starting with the similarity transform, 

We can express the one-turn maps in terms of the lattice functions 
at the locations s and s’

and after a page of algebra we obtain the lattice functions at point 
s’ (or 1) in terms of the lattice functions at point s (or 0) and the 
elements of the matrix M. The answer is

Knowing M, we can transform the lattice functions to any 
point in the beam line. 



Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

And so



Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

And so

The lattice functions evolve A particle evolves



The phase advance and tune

Several times we have used the phase advance for one turn of the 
closed orbit ( or any period of a periodic structure). It is

We call the phase advance for one complete turn of a ring the 
tune, and express it in units of 

There is one tune for each plane, including the longitudinal plane.
It’s an important function for beam stability.
Note we can evaluate the tune at any point in the ring and always 
get the same answer (a property not shared by α, β and γ)

(or Q)



The phase advance and tune

Several times we have used the phase advance for one turn of the 
closed orbit ( or any period of a periodic structure). It is

We call the phase advance for one complete turn of a ring the 
tune, and express it in units of 

(or Q)

A simple approximation to 
the tune can come from 
the average value of the 
beta function β and 
average radius R.



Applying beam dynamics tools to a lattice

Injection

Extraction

Collimation

R.F.

Dipoles

 Focusing 
elements

Dipoles
Let’s apply the 
tools we’ve 
developed to a 
storage ring.



Bending

The first task is to define the curved reference orbit using a layout of 
dipole magnets. This forms the fundamental footprint of the machine and 
defines our coordinate system for future analysis. E.g. Fermilab g-2 storage 
ring  

ds
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The FODO cell
Recall that two quadrupoles of opposite polarity could provide focusing in 
both planes at the same time. This is the fundamental building block of the 
FODO lattice.

The basic building block of this periodic structure is the FODO cell, consisting 
of a horizontally focusing quadrupole (F), a space (O), a defocusing 
quadrupole (D) and a space (O).

We can repeat the FODO cell to make a FODO channel. Note the 
drift space (O) can contain nothing, a bend, some diagnostics, 
an RF cavity or even a whole particle physics experiment!



The dynamics in a FODO cell
To understand the beam dynamics in a FODO cell we need to compute the 
one-period map.

To do this we simply multiply the matrices of the components of the cell 
together, conventionally starting in the middle of one of the 
quadrupoles, which means we start and end with a quadrupole matrix of 
half strength (length)

Recall 

and we multiply these matrices in sequence

First element!



The FODO cell
Let’s be concrete and take some real numbers

K = +/- 0.541244 m-2

lq = 0.5 m
L = 2.5 m

Multiplying out the matrices

We obtain



The FODO cell
Let’s be concrete and take some real numbers

K = +/- 0.541244 m-2

lq = 0.5 m
L = 2.5 m

This is the one period map of the FODO cell, and so has the form

Recall



Properties of our FODO cell

Is the FODO cell stable? For this we need the trace of the one-turn map to be 
less than or equal to 2. Here it is 1.414. So this FODO cell will give stable 
dynamics in this plane.

What is the phase advance per cell? Recall

The phase advance per cell is 45 degrees. This is a “45 degree cell”.

What are the lattice functions at the middle of the focusing quadrupole? 
We use

 

And find that β=9.645 m and α=0.
i.e. The beam size is at a maximum. 



A thin lens FODO cell

We can also make our life easier and compute the matrix for our FODO cell 
using the thin lens matrices. Again, starting from the middle of QF we have

We end up with the matrix in terms of L and f

We can ask for what parameters the FODO cell gives stable motion. This 
means

We can also write the cell phase advance in terms of the parameters:



Transfer line stability
Our stability equation from the previous slide seems slightly odd at first

It seems to say motion is stable when focusing is weak…

This makes sense though. If the focussing is too strong then the periodicity of 
beta can’t match the periodicity of the lattice. 



Beta in a FODO cell

Finally...
We can now compute all the lattice functions for a FODO cell. 
Note that βx is maximised in the middle of the focusing quadrupoles, and 
this maximum depends solely on the cell length and phase advance.

Using

We get

In the D quad



ERROR AND RESONANCES



A reminder of some of the terms we ignored...
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Real life and field errors
Recall that we started with an arbitrary magnetic field and made an 
expansion

where the first term is the dipole (steering) field,  the second is the 
quadrupole(focussing)  term, the next is the sextupole term, etc.

To create these fields we build magnets with a specified field quality. 
These magnets will never be perfect. Therefore any magnet will have 
small contributions of higher-order field components.

In addition, magnets will not be perfectly aligned. E.g. if a quadrupole is 
displaced it will apply an additional dipole field to the beam.

Finally, the magnet strength may differ from the design value and may 
vary with time. E.g. a power supply may deliver too much or too little 
current to an electromagnet.

In this lecture we include the effects of some of these  ‘field errors’ into 
our solutions to Hill’s equation.



Closed orbit distortion
The design orbit defined by all of the dipoles in the ring is  sometime referred 
to as the  “closed design orbit”.

This is the orbit a reference particle would follow in a perfect situation.

If there is a small additional dipole kick – the orbit will distort, and this 
distortion will affect  the orbit around the entire ring. i.e. the effects of a 
small kick at any location are not localised; they will be seen everywhere in 
the ring!

This closed orbit distortion defines a position-dependent orbit offset around the 
ring. In effect the particles no longer undergo betatron oscillations around the 
design orbit but around a new closed orbit



Closed orbit distortion

Imagine we have a “dipole kick” error of strength ΔB and length l, at some 
location s0

Recall the transport map in terms of the Twiss parameters

• The M12 element shows how a horizontal angular kick (Δx’) will 
translate into a horizontal displacement at another point in the ring. 

• On each “turn” we experience another kick. 
• We need to apply this map for many turns, summing over the kicks, to 

see how the displacement accumulates.  
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Closed orbit distortion

A short(ish) analysis adding up the effects from each kick after a large 
number of turns gives the distorted closed orbit in terms of the beta 
function at s0 and the beta function at any other position in the ring s.

We can minimise this distortion by monitoring the position of the beam 
and using orbit correction magnets.



Resonances
Our expression for the closed orbit distortion has an overall factor of

 

This means that every time the tune becomes an integer, the argument of 
the sine becomes a multiple of π, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine. 
● Then the particle would encounter a dipole error at the same point in the 

machine and at the same phase in its betatron oscillation on every turn. 
● This means the effect of the dipole error accumulates constructively on 

every turn.
● We avoid this by minimising magnet errors and staying away from 

dangerous values of the tune. 

NB Consider what happens to the one turn map in this case.



Resonances
Our expression for the closed orbit distortion has an overall factor of

 

This means that every time the tune becomes an integer, the argument of 
the sine becomes a multiple of π, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine. 
● Then the particle would encounter a dipole error at the same point in the 

machine and at the same phase in its betatron oscillation on every turn. 
● This means the effect of the dipole error accumulates constructively on 

every turn.
● We avoid this by minimising magnet errors and staying away from 

dangerous values of the tune. 

More generally resonances occur when



Quadrupole errors
Imagine we have an extra quadrupole in our ring (or a quadrupole field error) 
of strength k and length L at location s0. Unlike the dipole error, this will 
change the focussing properties of the lattice causing:

1)A change in the beta function
2)A change in the tune.

Recall that the tune is given by:



Quadrupole errors
Imagine we have an extra quadrupole in our ring (or a quadrupole field error) 
of strength k and length L at location s0. Unlike the dipole error, this will 
change the focussing properties of the lattice causing:

1)A change in the beta function
2)A change in the tune.

● The perturbed tune increases if k > 0, which corresponds to a 
focusing quadrupole i.e. focussing more means more oscillations. So 
we get a positive tune shift for increased particle focusing.

● This means a pure quadrupole field error would shift the tune one 
way in one plane and the other way in the other plane

● However, we can also get tune shifts from space-charge,  beam-
beam effects  and electron clouds, which can cause same-sign tune 
shift in both planes

● The effect of the quadrupole error is proportional to the local beta 
function. This is a common feature -  the beta function magnifies local 
field errors.

Change in the tune:



A distribution of quadrupole errors

If we have a distribution of quadrupole errors around the ring, the 
approximate tune shift can be calculated from

This effect can also be used deliberately to measure the beta functions. 

● We vary the strength of a single quadrupole in the ring.
● We measure the tune.
● The response is proportional to the beta function at the quadrupole. 

In general the beta function tells you how sensitive the beam is to 
perturbations.



 Beta beat

The change in the beta function is itself a function of s, and oscillates 
twice as fast as the original beta function:

This is why it’s called a ‘beta beat’.

The strength of the distortion is proportional to the quadrupole error (k) 
and to the beta function at the position of the error s0. 

As before we have a sinusoidal term in the denominator that depends on 
the tune.

This gives us a ‘half-integer resonance’. 



Resonance diagram

The ‘order’ of the 
resonance is m+n

Similarly, higher-order resonances are generated by errors in high-order multipoles.



Beta beat at the LHC



Summary

● Dipole Errors
● Introduce closed orbit distortion
● Betatron oscillations occur around the new orbit
● Give resonance on integer values of the tune

● Quadrupole Errors
● Introduce a ‘beta beat’
● Introduce a tune shift
● Give resonances on half-integer values of the tune.

● Detailed simulation needed to calculate tune and avoid all resonances. 
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DISPERSION, CHROMATICITY, EMITTANCE



Off-momentum particles
So far we have considered beam motion where all particles have the design 
momentum p.
We refer to these particles as on-momentum particles.

In general, a particle’s momentum will be p + Δp

Recall in our solutions to Hill’s equation we had

Which we can write as

Expanding the right hand side and dropping small terms we obtained 



The inhomogeneous equation of motion

Replace the momentum of an on-momentum particle with that of the off-
momentum particle expressed in terms of the fractional deviation ‘delta’

Expand the vertical magnetic field and binomially-approximate the momentum 

Plug these results back into the equation of motion 

Expand all of the brackets, keeping only terms linear in x and δ, and using

we obtain the inhomogeneous equation of motion: 
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Expand the vertical magnetic field and binomially-approximate the momentum 
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we obtain the inhomogeneous equation of motion: 



Homogeneous and inhomogeneous Hill’s equations
Now we see a little more structure to Hill’s equation

It looks like the homogeneous version (below) apart from a term linear in δ

The extra term on the RHS will drive the x motion of an off-momentum 
particle, which we shall call ‘horizontal dispersion’, or simply dispersion.

The general solution for the horizontal motion of a particle is given by the 
sum of two terms : the betatron motion term (soln to homogeneous eqn) and 
an off-momentum dispersion term (soln to inhomogeneous eqn):

We can think of xi(s) as a closed orbit term, around which xh(s) oscillates.

Let’s define a special orbit, D(s), which is followed by a particle with δ=1



Dispersion
Our newly-defined dispersion function D(s):

• Is the orbit of a particle with δ=Δp/p=1.

• Obeys Hill’s equation.

• Determines the orbit of any (slightly) off-momentum particle

 This is similar to a dipole error closed-orbit distortion.

Typical values:



Dispersion

Central design orbit is 
closed for p=p0 Closed orbit for p < p0 

Closed orbit for p > p0 

Lattice 
property

Particle’s 
momentum 
error



Calculating D(s)
We need to find a solution to the inhomogeneous Hill’s equation and add it to 
the general solution of the homogeneous equation.

For D(s) on the closed orbit we assume the only field is the dipole field. 
This means that D(s) is a solution of

 We have already solved the homogeneous equation (below).

We only need to find a particular solution of the inhomogeneous equation 
and add this solution to the solution of the homogeneous equation. If the 
RHS is just a constant,  then a valid choice of a particular solution is also a 
constant 



Calculating D(s)

Inserting this solution for D  into the inhomogeneous equation above 
immediately gives

And so our general solution for D(s) is



The matrix equation for D(s)

As before we determine A and B using the initial conditions at s=0

Inserting these into our general solution yields

Hence we can write the dispersion function as

Which we can write as a matrix equation



The matrix equation for D(s)

As before we determine A and B using the initial conditions at s=0

Inserting these into our general solution yields

Hence we can write the dispersion function as

Which we can write as a matrix equation



The dispersion
Note the upper-left 2x2 matrix is just the transfer matrix for a dipole we have 
already derived. 

The additional terms in the dipole transfer matrix produce or ‘drive’ the 
dispersion.

As the motion is given as the sum of the betatron motion and the dispersion

We can write the general motion as a matrix equation



Dispersion in  a short ‘sector’ dipole and a quadrupole

For a short sector dipole with a small bending angle θ 

we can find a simplified matrix from its entrance to its exit

This is useful for quick calculations and corresponds to a thin-lens kick for 
an off-momentum particle. 

In a quadrupole the dispersion function is focussed/defocussed, but there is 
no driving term for the dispersion and so the 3x3 map is given by



Dispersion in a FODO cell

Consider a FODO cell with thin lens quadrupoles and dipoles in the drift sections. 
We can calculate dispersion in the same way we computed the beta functions in 
a FODO cell previously.

Start at the middle of the F quad, so we have a magnetic arrangement

Looking at only the x motion in the thin-lens and small angle approximations we 
find 

which evaluates to 

Here L is the length of each dipole, θ is the bend angle and f is the quadrupole 
focal length. The upper 2x2 is the same as previously calculated, but now we’ve 
added the dispersion.



Dispersion in a FODO cell

By symmetry, the dispersion in the middle of QF must satisfy the closed 
orbit condition

and if we solve the resulting equation, noting that in  a FODO cell the phase 
advance is given by

we get the dispersion in the middle of the QF

we can get the dispersion elsewhere by transforming this vector using our 
3x3 maps. For example in the middle of QD we get



Simulating dispersion

D(s) is created (or driven) by dipoles, focused by quadrupoles 
and will grow in a drift if the angular dispersion D’ is non-zero



Controlling dispersion

Dispersion-free lattices are important in many applications. These 
allow bending of the beam without generating dispersion.

Examples are: Chasman-green, triple-bend achromat,…

We also can build a dispersion suppressor, which matches the 
periodic dispersion in an arc (perhaps made of FODO cells) into a 
dispersion-free straight section. 

We can also displace the beam transversely without generating 
dispersion using a sequence of  bends, sometimes called a 
geometrical achromat.

These will be covered in later courses….
But let’s look briefly at some examples



The double bend achromat (DBA) 
If the dispersion function is non-zero the orbits of particles depend on the 
particles’ momenta. An “achromatic system” means the beam positions at 
each end do not depend on momentum.

i.e. we require an arrangement of magnets, including bends, which does not 
generate any dispersion through the structure. 

A single bend is not achromatic. In principle, dispersion can be suppressed by 
one focusing quadrupole and one bending magnet. 

With one focusing quad in the middle between two dipoles, one can get the 
achromat condition, which means no additional dispersion is driven by the 
structure.

Due to the mirror symmetry of the lattice w.r.t. to the middle quadrupole  D’ 
should be zero in the centre of the lattice. This is the so-called double bend 
achromat (DBA) structure. 

We generally need further quads outside DBA section to match the betatron 
functions, tunes, etc. 

Similarly, one can design triple bend achromat (TBA), quadrupole bend 
achromat (QBA), and multi-bend achromat (MBA or nBA) structures. 



DBA structure with a single quadrupole (sometimes called Chasman-Green)



A DBA structure with a quadrupole triplet (vertical)



The long straight section of the LHeC collider (optical work done by CI)



MAX-IV (Gus Perez-Segurana CI)

In addition to affecting the transverse 
motion, dispersion also has longitudinal 
effects... 



MAX-IV (Gus Perez-Segurana CI)

In addition to affecting the transverse 
motion, dispersion also has longitudinal 
effects... 

Longitudinal effects



Momentum compaction
A momentum offset changes the horizontal orbit of a particle through 
dispersion.

Ideally, a machine with only horizontal bends does not generate any vertical 
dispersion

However, dispersion does generate a longitudinal effect, as the total 
circumference of an off-momentum particle’s trip around the machine will be 
different to the reference particle.

Let’s calculate the path length difference. Consider this situation: 



Momentum compaction

The path length deviation is given by  

The change in circumference of the machine is given by an integral over the 
whole ring

For the case where the closed orbit distortion is given by a momentum error

We define the linear momentum compaction factor

Therefore the linear momentum compaction factor is given by

so



Momentum compaction

The path length deviation is given by  

The change in circumference of the machine is given by an integral over the 
whole ring

For the case where the closed orbit distortion is given by a momentum error

We define the linear momentum compaction factor

Therefore the linear momentum compaction factor is given by

so



Typical lattices and momentum compaction
The momentum compaction factor is an important lattice design parameter

If the orbit is exactly circular we get

A large value means the path length varies a lot for off-momentum particles. 
This means the particles tend to spread out and the bunch length becomes 
long.

Similarly, a small value means a shorter bunch length. 

Typically <D> > 0. In this case the momentum compaction factor is > 0 and 
the orbit gets longer for positive momentum deviations.

An isochronous lattice is designed to counter this natural tendency, i.e. 
path length doesn’t depend on momentum.



Chromaticity

Consider some particles with slightly different momenta passing 
through a FODO cell

Higher momentum particles have a higher rigidity, so experience 
weaker effects when passing through magnetic fields. This means 
focusing is momentum-dependent and so the machine tune will 
depend on momentum deviation.



Chromaticity

If a machine’s tunes depend linearly on the momentum deviation then

where the linear chromaticity is ξ. To analyse this we return to the equations 
of motion, but this time keeping all terms linear in x and δ. Recall 

This time, we keep the term (x.δ) we previously dropped. After dropping 
higher order terms we obtain the equation of motion with both a dispersion 
term and a ‘chromatic’ term

As usual
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Chromaticity

We already know how to compute the effect of a quadrupole field error.
Recall the tune shift from a quadrupole error k(s) in our lattice

We can think of this chromatic term as a quadrupole field error of strength

A similar analysis in the vertical plane would have a found a chromatic 
perturbation of

Which means we can write down the tune-shift arising from the 
chromatic perturbation term, 

An expression which is linear in the momentum deviation. 



Natural Chromaticity
The tune change per unit delta is the linear chromaticity we defined earlier

We call this chromaticity ‘natural’ as any lattice with quadrupoles generates 
this chromaticity. Similarly in the vertical plane

As the beta function is biggest in focusing quadrupoles the natural chromaticity 
is normally negative in both planes.

The linear chromaticity is sometimes written as Q’

For a FODO cell we can show that



Is chromaticity bad?
Chromaticity is naturally generated by any focusing lattice.  So when we 
have non-zero k we have chromaticity, and it tends to be negative in both 
planes.

It tells us how much the tune shifts per a unit shift in the momentum 
deviation.

Since any beam will an energy/momentum spread, chromaticity tells us the 
spread of the tune of the beam.

Tune is therefore a blob not a point in tune-space.
This is a plot of tune at HERA, showing the spread of tunes due to 
uncorrected chromaticity. It crosses many resonances….



Tune after chromaticity correction

We need a mechanism to correct for chromaticity.

Chromaticity originates when off-momentum particles ‘see’ 
a different quadrupole field than an on-momentum particle.

So we need a correcting device which has some kind of 
momentum-dependent focusing…..



Sextupoles
A sextupole field has field components given by

Note the field is quadratic in x and y, and also (for the first time) we see 
products of x and y in our equations. A sextupole couples the horizontal 
and vertical beam motion.

where we define the sextupole strength by



Sextupoles

An off-momentum particle passing through the sextupole has 
displacement

and so the fields seen by the particle are found by substitution

There are many terms here, some helpful and some harmful. The helpful 
ones for us are
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Sextupoles
The dispersion effectively makes the sextupole into a quadrupole with a 
momentum-dependent focusing gradient

This means we can compensate the chromaticity in the ring, and reduce the 
tune spread, by adjusting the sextupoles. 

But it’s not all perfect. Some sextupole terms we ignored introduce non-
linearities and coupling into our accelerator ring. 

It is difficult to represent a sextupole in our 
linear formalism, and often the best way to 
understand the impact of sextupole fields is 
to track particles with matrices, stopping to 
be more careful every time a sextupole is 
encountered. This leads to the study of a 
machine’s dynamic aperture (i.e. how large 
can a particle’s deviation from the closed 
orbit be if we want the particle to  survive for 
many turns.)



Beams of particles and emittance

So far we’ve defined ‘emittance’ as a property of  each particle. In the 
Courant-Snyder analysis we showed the motion of an individual particle is 
completely specified by its emittance and initial phase. 

Different particles have different emittances and initial phases but they all 
have the same Courant-Snyder functions.

For example, the particle with x=x’=0 will have zero emittance and always 
stay at x=x’=0. This is the ideal particle. 

But, we always have more than one particle in our beam and so need to 
understand how to characterise a beam of particles, each with their own 
emittance.



Beams of particles and emittance

We can plot the emittance (also known as the Courant-Snyder invariant for 
all the particles in a beam

We choose the emittance of one particle to represent the emittance of the 
entire beam.
For example, we can characterise the beam by the emittance of the particle 
for which 95% of the beam particles are within the ellipse of this particle.

Another useful definition, when dealing with complicated distributions, is the 
RMS emittance, which we find by averaging over the beam distribution



Beam moments
For a complex and non-linear beam distribution, we often work with the moments 
of the beam distribution where ρ here is the particle density not the radius of 
curvature!



Liouville’s theorem
Liouville’s theorem : the density of points representing 
particles in 6-D (x, p) phase space is conserved if  all 
forces are conservative and differentiable.

Radiation and other dissipative forces do not satisfy this 
requirement, but magnetostatic forces and (Newtonian) 
gravitational forces do. 

There must be no (or very slow) time-dependence in the 
system.

Note: acceleration keeps (x,p) phase space constant, but 
reduces (x, x’) phase space, so there is no violation of 
Liouville’s theorem.  

Transfer maps derived from a Hamiltonian have a 
mathematical property called symplecticity, which is 
linked to Liouville’s theorem. But this is beyond this 
course…

Sympleciticty in 2D phase space is equivalent to det(M)=1

J. Liouville
(1809-1882)
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