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Lee, “Accelerator physics”

Wiedemann, “Particle accelerator 
physics”

Chao and Tigner, “The handbook”

Wille, “The physics of particle 
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Forest, “Beam dynamics”

Wangler, “RF linear accelerators”

And many more….
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PART ONE - INTRODUCTION



What is beam dynamics?

Particle accelerators are arrays of magnets and accelerating 
structures through which charged particles move in a 
predictable fashion, such that the particles can be thought of 
as forming a beam.

In the absence of the external forces provided by a particle 
accelerator, a bunch of charged particles will diverge.

Beam dynamics is the study of the motion of these particles :
Individually
Collectively

Beam dynamics allows us to design, optimise, upgrade, and 
operate accelerators.

Essentially, we need to solve the (relativistic) Lorentz force 
equation for each particle in a bunch of particles travelling 
through electromagnetic fields.

The standard approach to this problem and the standard 
terminology have been developed for common ‘circular’ 
accelerators such as synchrotrons. This is where we’ll start.   



Example - DIAMOND light source (an electron synchrotron)



Example - The LHC (a proton synchrotron)



Example - LHC parameters



Example - LHC parameters

Energy of 
each particle



Example - LHC parameters



The closed orbit

There is a “closed design orbit” around the ring.

To maintain long lifetimes we need to focus the beam such that all 
particles oscillate around this design orbit with a small oscillation 
amplitude.

An example below shows the LHC beam (with size of a few microns) 
oscillating around the closed orbit (~27km long) with deviations of 
only a few milimetres.



The role of beam dynamics
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General simplifying assumptions (not always valid!)

1)The machine is periodic. 
2) The particles spend a long time in the machine. 

● Their motion is stable.
3)The motion of an individual particle does not have the same 
periodicity as the machine, but the envelope of the motion 
(considering the motion of many particles or of one particle 
orbiting the machines many times) follows the machine 
periodicity.
4)The ‘longitudinal’ and ‘transverse’ motions of the particles 
happen on very different timescales, and so can be treated 
independently. 



A simple harmonic oscillator

Let’s consider another simple system which displays stable oscillations.
Consider a mass, m, on a spring with spring constant k.

x

If the mass is displaced from equilibrium then the force on the mass 
from the spring returns the mass back towards the equilibrium point.

F



A simple harmonic oscillator

The force is given by

When we use Newton’s law we get the equation of motion

This differential equation has an oscillatory solution (with 
two constants)

Which we can also write as

or equivalently



A simple harmonic oscillator with the opposite force

Consider a ‘negative’ spring constant

Which leads to the standard equation of motion

Note the force is now pushing the particle to larger 
amplitude, and we can write the solution (again with two 
constants) as



The Lorentz force law

We need to know what force plays the role 
of the spring in our mass-spring analogy.

The force on a charged particle of charge q 
from an electric field E and magnetic field B 
is given by the Lorentz force law

E and B themselves are vector fields which 
can be calculated from Maxwell’s equations in 
the presence of sources and boundary 
conditions (see courses on magnet design 
and rf cavities).

Often the particle speed in an accelerator can 
be approximated by the speed of light.



The Lorentz force law

We use  electric fields to accelerate particles, and generally use 
magnetic fields to steer the particles. The force from a magnetic field 
benefits from the presence of the velocity in the Lorentz force law 

Consider a uniform magnetic  field perpendicular to the particle 
velocity such that

The magnetic force on a particle of velocity ≈c and charge q 
can be written as

Which we could write in terms of an equivalent electric field

NB - It is challenging to produce electric fields above 1 MV/m !



Transverse motion in an accelerator

We’ve seen that the simple harmonic oscillator equation, with 
different signs for the spring constant, can lead to oscillating 
and diverging solutions.

In the next lecture we will show that the basic equations of 
transverse motion for a particle in a simple accelerator take 
the form:

where s is the distance along the closed orbit. K(s) can be 
thought or as a spring constant, and we expect that if it is 
positive we will get oscillating solutions, and if it is negative we 
will get diverging solutions, just as in our simple case of the 
simple harmonic oscillator.  

We can think of an accelerator as being made up of piece-wise 
regions with different sizes and signs of the spring constant.



A circular design orbit

Let’s start by assuming we apply 
a constant, uniform magnetic 
field to give circular motion.

The force on the particle is 
always at right-angles to the 
motion and given by 

We equate this to the centripetal 
force

Here, γ is the Lorentz factor. 
Warning! Later we will use it 
to denote a different quantity! 
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A circular design orbit and beam rigidity

A particle with relativistic 
momentum p and charge q 
in a guide field B will follow 
a circular path of radius ρ.

The product of the field and 
the radius is a function only 
of the particle momentum 
and charge. 

p/q  appears in the 
normalisation of many 
physical quantities in beam 
dynamics. 

The quantity Bρ, called the beam 
rigidity, is often used instead of 
p/q.

NB particles in a bunch may have 
momenta that differ from ‘p’ which 
is the reference momentum.



Beam rigidity

For the highly-relativistic case  
(often encountered) 

We can calculate the beam 
rigidity from the easy-to-
remember equation

which is useful when working with 
high energy colliders, as the beam 
energy is often expressed in units 
of GeV.
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Beam rigidity

For the highly-relativistic case  
(often encountered) 

We can calculate the beam 
rigidity from the easy-to-
remember equation

which is useful when working with 
high energy colliders, as the beam 
energy is often expressed in units 
of GeV.
I am using ‘0’ here to emphasise 
that we are talking about the 
reference (design) energy and 
momentum.

We will generally normalise 
magnetic field strengths to the 
beam rigidity, and obtain 
energy-independent ‘k values’, 
e.g. for a uniform B field



The magnetic guide field (dipole magnets)

Consider the LHC design

x

z dipole 
field

Image of a dipole magnet.
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Oscillations and focusing

Consider a positively charged, constant 
energy particle in a fixed dipole field 
(into the page).

The reference particle executes 
‘cyclotron motion’.

Other particles of the same energy but 
at different starting positions execute 
cyclotron motion of the same radius.

Compared to the reference trajectory, 
this looks like an oscillation. This is 
called a betatron oscillation.

The number of oscillations per turn is 
called the ‘tune’.

In this case, the tune is 1.

Reference particle

Off-axis particle

geometric focusing



Oscillations and focusing

x’ dp/p

s

y

y’

This effect only applies to small displacements in the horizontal position.

The coordinate system is x (horizontal), y (vertical), z or s (along the design orbit).  
 



Focussing magnets

● The particles in a bunch will diverge unless focussed.
● The angle of deflection of a particle moving a distance l perpendicular to a 

uniform magnetic field can be found from integrating

● To get focussing in all directions we need the B field to be azimuthal around 
the particle trajectory. To get a focal point we need the magnetic field and 
deflection angle to be proportional to the radial distance from the design orbit, 
as in a conventional optical lens.

● This principle is used in specialised magnets such as Lithium lenses, but the 
focussing achievable is quite weak, and it requires the particle beam to pass 
through a physical lens.

● This isn’t generally suitable for high energy particles... 
● The best solution is generally to use quadrupole magnets (strong focussing).

⇒
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A (normal) quadrupole

For positively charged particles 
moving into the page, this 
quadrupole (above) gives a focusing 
force in x. However it defocuses in y, 
due to Maxwell’s equations. The 
opposite is shown in the diagram to 
the right.

(Normalised field 
gradient k1)



Defocuses in x for positive particle moving into page. 



The expansion of the magnetic fields

We now derive the equations of motion for a particle in an 
accelerator containing dipoles and quadrupoles

1) We consider the motion of the particles w.r.t. a design orbit

2) We assume the deviation of the particle from this design
orbit is small, so x,y << the bending radius

Assumption (2) means that we only need to take into account linear 
terms in the dependence of the field B w.r.t. x and y.

So it makes sense to make a Taylor expansion of B around the 
design orbit and normalise to the beam rigidity. E.g.
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A storage ring, with a design orbit determined by dipoles and beam 
focussed around the design orbit by quadrupoles.

Dipole

Quadrupole



A combined function magnet

We can also provide the magnetic 
field gradient needed for beam 
focusing by tilting the magnetic 
pole faces of a dipole magnet.

Notice that there is a component of 
B such that Bx  is proportional to y.

Hence this magnet has both a 
dipole and a quadrupole component 
(giving some vertical focussing): a 
combined function magnet.

(The pole face tilt must be small for 
stable motion. This style of 
focussing where the horizontal 
focussing is only from the dipoles, 
and a small amount of vertical 
focussing is used, is often called 
‘weak focusing’).



The equations of motion in an accelerator

We continue to derive the equations of motion for a particle 
moving under the influence of dipole and quadrupole fields in an 
accelerator. The steps we will follow are

1) Define a ‘curved’ coordinate system and its coordinates

2) Calculate the position, velocity and acceleration vectors in this 
coordinate system. We are only concerned with the transverse motion 
around the design orbit, so we will discard other terms.

3) Use the Lorentz force law to calculate the forces on the particle, and 
write down an expression for the change in particle momentum.

4) Change the independent variable from time to position along the 
design orbit.

5) Expand the equations and approximate them as linear in x and z.

6) Specialise to the case of pure dipole and quadrupole fields.

The result will be two second-order ordinary differential equations 
(one for the horizontal plane and one for the vertical).



Our coordinate system and our coordinates (x, z, s)

ρ

s

θ

When discussing motion 
previously we used ‘y’ as our 
vertical coordinate. In this 
section we use ‘z’. You’ll see 
both in the literature.

We’ll use a curved coordinate 
system, with this curvature 
produced by a local dipole field.

The curved reference trajectory 
is normally called the design 
orbit, and the coordinate 
system moves with a reference 
particle around the design orbit 
defined by the dipoles.

We’ll denote the local curvature 
of the orbit as ρ.

The distance along this design trajectory will 
be s. The total length of the design orbit is 
therefore

Our coordinates (x and z) represent 
deviations with respect to the design (ideal) 
orbit, and we assume these deviations will be 
small (x is typically a few millimetres).

In addition to the positions (x and z) we also 
consider the slopes dx/ds=x’ and dz/ds=z’



Coordinates are with respect to the design orbit

The path length along this orbit is labelled by s.

For now, we start off with time (t) as the independent variable.

At any point  on the design orbit we have a coordinate system (x, z, s).

For simplicity, we assume the design orbit lies in the horizontal plane.



Motion of unit vectors in this coordinate system

Evaluating       and      is messy. 
We do it here for completeness. 
We are more interested in the 
result than the method. 

Motion of the unit vectors of our rotating coordinate 
system wrt static unit vectors :

From geometry.



Changing the independent variable from theta to t

Convert 
from 

to

The position vector of any particle can then be written with 
respect to a point  r0 on the design orbit as

where 

d
d

dt
d
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Velocity and acceleration in the comoving frame

Evaluate the first 
and second 
derivatives with 
respect to time…

Now we make one last 
transformation. Instead of 
using the derivative with 
respect to time for ‘x’ and ‘z’, 
we can use the derivative 
with respect to ‘s’.
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Changing the independent variable from time to path length

…and the same for z 
of course.



Changing the independent variable from time to path length

…and the same for z 
of course.

+ ...

+ ...

For simplicitly, we’ll just 
look at the first term of 
the second derivative we 
obtained previously.

We repeat this for the 
other components to get 
the expression on the 
next slide.



Changing the independent variable from time to path length



Changing the independent variable from time to path length

Ignoring any rapid changes 
in the velocity of the 
particles as they pass 
through the magnetic 
fields, we can drop terms 
proportional to 

22 dtsd



Changing the independent variable from time to path length

Ignoring any rapid changes 
in the velocity of the 
particles as they pass 
through the magnetic 
fields, we can drop terms 
proportional to 

22 dtsd

That gives us everything we need for the Lorentz force 
equation apart from the B field.



Dipole and quadrupole fields 
Now, consider a linearised magnetic field (dipoles and quadrupoles 
only)

Recall
● we assume the dipole magnets are providing horizontal 

bending only
● the quadrupole focuses in the x-s plane if k<0 and focuses 

in the z-s plane if k>0

In some books it’s 
assumed that the 
particles are electrons 
and hence q=-e which 
changes the sign of k.



Equations of motion in dipole and quadrupole fields 
Combining our equations for the velocity, acceleration and linearised 
magnetic field, we have

Acceleration in the ‘s’ 
direction due to the 
magnetic field will be 
negligible. 
We ignore it here...



Equations of motion in dipole and quadrupole fields 
Combining our equations for the velocity, acceleration and linearised 
magnetic field, we have

Consider z motion first

NB x and z are 
small.



Equations of motion in dipole and quadrupole fields 
Now consider x motion

Note that in general ρ and k are functions of s.

Assume 



Equations of motion in dipole and quadrupole fields 
Now consider x motion

Note that in general ρ and k are functions of s.

Assume p << p



Equations of motion in dipole and quadrupole fields 
Now consider x motion

Note that in general ρ and k are functions of s.

Assume p << p



Finally we have Hill’s equations

So, after some effort, we derived Hill’s equations. They are 
linearised second order differential equations for the transverse 
variables x and z in dipole and quadrupoles fields in a particle 
accelerator. 

In the equation for x, g comes from the quadrupoles and there is 
also natural focusing from the dipoles in the plane of curvature.

We can compactly write Hill’s equations in both planes, denoting 
x or z by u and writing the position-dependent ‘spring constant’ 
as K



Finally we have Hill’s equations

Where the periodic functions of s describe the lattice

In these equations, ρ comes from the natural horizontal focusing 
in dipoles and the gradient term represents the strong focusing 
in quadrupoles. 



PART TWO- SOLUTIONS TO HILL’S EQUATION



Solutions to Hill’s Equations

● We will look for two kinds of solutions to Hill’s equations

● Piece-wise solutions for separate magnets (maps)

● General solutions for the entire orbit (Courant-Snyder formalism)

● We will then compare the two kinds of solutions



Solution of piece-wise Hill’s equations

 
 These are our equations of motion.

If K is constant then these 
equations look like  the equation 
for a simple harmonic oscillator.

So we know the solution from out studies of a mass on a spring! 
Let’s guess at

Take the derivatives and substitute into the equation of motion 
K>0



Solution of piece-wise Hill’s equations

So this solution seems to work. 
NB We assumed K > 0 to get an oscillatory solution. 

We can fix the integration constants from the initial conditions

Now, we can write down the evolution of the variables x and x’ in 
a region with constant and positive K as 

K>0



Solution of piece-wise Hill’s equations

What does this mean? Notice that the x’ variable receives a 
negative kick if x0 is positive, which corresponds to pointing the 
particle more towards the axis

Also note that the final coordinates are linear combinations of the 
initial coordinates. This is a direct consequence of linearising the 
equations of motion. 

We can write the solution very compactly as a matrix equation

So a particle is represented by x and x’, i.e. the vector (x,x’)



Solution of piece-wise Hill’s equations (with negative ‘spring constant’)

What about the case of K < 0? This has equation of motion

And corresponds to a diverging solution. We remember our 
studies of a mass on a spring and use the sinh/cosh functions.

Which means the general solution to the equation of motion is

This corresponds to a defocusing 
lens, and we can write the matrix as 
before.



Focusing and defocusing quadrupoles

For a given quadrupole magnet, we have one sign of the constant k in 
one plane  and the opposite sign in the other plane.

As expected the quadrupole focuses in one plane and defocuses in 
another  (as the magnetic field is curl free).

We call a horizontally-focusing quadrupole a “focusing quadrupole” 

A quadrupole with dBz/dx > 0 gives 
k > 0, and so is focusing.
 
Similarly dBz/dx < 0 gives k < 0,
and so is defocusing.



Drift spaces

x
x’

A drift space is a region of the beam line with no electromagnetic 
fields. We can figure out the evolution equations for x and x’ by 
either simple geometry or taking a limit of the quadrupole 
matrices where K->0. Either way we find 

Which we can write as a matrix very easily

L



The thin lens approximation

We know the matrix of a quadrupole can be written as

Very often the magnet is short compared to its focal length

This means we can take the limit of a very short magnet, 
whilst keeping the focal length constant:

This give us the thin lens matrices, which are very useful for 
quick calculations of a given accelerator structure 
(recall K > 0 for a horizontally focusing quadrupole, so f > 0)



Recap of linear transport matrices

An aside: What are the 
determinants of these 
matrices? What does that 
imply?



A pure dipole

To get the matrix for a dipole, we start from the matrix of a quadrupole

In the horizontal plane, a dipole gives a pure bending contribution to K

And so for a pure bend of length l we obtain

We can see the expected geometric focusing in the plane of the bend

NB The matrix in the vertical plane is a drift



Combining transfer matrices
In a real accelerator we have 
lots of elements in series.

Each element is represented 
by a matrix.

We multiply together the 
matrix for each element to 
give an overall transfer 
matrix through the system

First 
element!



The doublet
Consider a doublet made from a focussing and a defocussing quadrupole: 

If we multiply the thin lens matrices, the focal length for the 
combined system is easily obtained from the (2,1) element of 
the composite matrix

Focal lengths f1 f2
Separation d

If we let f1 = - f2 then the leading terms cancel and the doublet 
is focusing in both planes at the same time: I.e. f=(f1)2/d 
for x and z. This is exactly the behaviour we want in our 
accelerator!

This concept led to the invention of the alternating gradient (or 
strong focusing) principle and is the basic building block of 
most modern accelerator lattices.

d



Maps 

   A  map  relates an initial state vector to a final state vector

For the linear case, the map can be represented as a matrix.

For non-linear systems we cannot use a matrix to represent the map.

Non-linear representations include Taylor maps or Lie maps. 

See more advanced courses for details...



The one-turn map

We know how to combine maps

One particularly useful map is the one-turn map

If we start at location s in a ring of circumference C, then the one 
turn map is defined as one turn around the ring

This means the map for N revolutions of the ring is found from N 
applications to a given particle state vector of the one turn map 



A single particle for a single turn

It is simple to implement these maps in a computer simulation.



Tracking particles for many turns

Looking at lots of particles over many 
turns we see they trajectories form an 
envelope for the beam.

Note we can see the straight reference 
particle (yellow) in the above plot, which is 
not a real particle.



Back to Hill’s equation

Hill’s equation is a second order differential equation for a 
system with periodic focusing properties

It’s like a pendulum or mass on a spring but the restoring 
force is not constant. It’s a periodically-varying force 
(often seen in planetary dynamics).

If the closed orbit has periodicity L, then so does the 
function K(s)

So we can expect a kind of quasi-harmonic oscillation, where 
the frequency and amplitude depend on the location in the 
ring and show periodicity similar to that of the function K(s)…



The Courant-Snyder formalism

In the Courant-Snyder formalism we assume a solution of Hill’s 
equation inspired by our intuition of a position-dependent 
amplitude and phase. It is this….

- β(s) determines the amplitude and depends on the position 
around the accelerator. It’s not the relativistic β

- Ψ(s) is a position-dependent phase
- ε is a constant. Because Hill’s equation is linear, the 

constant does not appear in it. We’ll see later why ε is 
called the emittance.

β(s) is the key quantity in the Courant-Synder formalism and 
has many names : the beta function, the beam envelope 
function, the Courant-Synder beta function, the amplitude 
function and so on. It is always positive.

We’ll see that



If we take the derivatives of the Courant-Synder solution and substitute 
them back into the equation of motion, we find we get two terms, one 
proportional to cosine and one proportional to sine. This is a good 
exercise to do!

The coefficients of these terms must vanish separately. We obtain two 
differential equations:

A differential equation for the beta function 

The second equation equation can be integrated immediately:

and we are free to choose the integration constant to be unity
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The Courant-Synder (or lattice) functions

We then immediately have the result for the phase function

So this position-dependent phase is given by an integral of the 
beta function along the beam line. i.e. knowing the beta 
function means we can compute the phase function.

We can now eliminate the phase function from the first of the 
differential equations to get a differential equation for the beta 
function

So knowing the distribution of focusing strengths along a beam 
line determines beta.
Finally, we define two additional functions (lattice functions)



Applying the initial conditions

Once the beta function is known, and hence α and γ, the motion of a 
single particle is completely determined by specifying the emittance 
and the initial phase factor of the particle. So we have

We can combine these two equations to give the quantity

Which means we can write an expression which is invariant for a 
particle

Or, expanding the square, we arrive at the famous result

c.f. x
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Let’s look at this equation carefully. 

For every point in the accelerator we have a value of the functions α, β 
and γ. They depend on the lattice. 

At any point, if we combine the particle position and angle with these 
lattice functions we get an invariant, which was the emittance we saw 
in the solution to Hill’s equations in the Courant-Synder formalism.

As the particle moves to the next location in the accelerator, where we 
have different lattice functions, it get a different position and angle. 
However if we form this function again at the new location we get the 
same value as before.

In other words, the emittance is a constant of the particle’s motion.

The emittance is an invariant



The phase-space ellipse

This function describes an inclined 
ellipse in the (x,x’) plane, with the 
size and orientation of the ellipse 
described by the values of α, β 
and γ.

β controls the extent along the x 
axis, γ controls the extent along 
the x’ axis, α determines the 
ellipse orientation

 (example – what values of α, β 
and γ give you a perfect circle?) The area of the ellipse is 

given by 

Which means the area of an ellipse 
transcribed by a given particle is 
constant.



A stroboscopic plot of a particle turn after turn after turn

Recall that the lattice parameters are functions of the focusing of the 
lattice, so every point in the lattice has a value of the lattice functions and 
so every point in the lattice has its own orientation and eccentricity of the 
ellipse. 

A given particle has its own value of the emittance which fixes the area of 
the ellipse it moves around. 

Consider sitting at a fixed point in the ring and watching a single particle 
turn after turn after turn. 

(x1, x1’) (x2, x2’) (x3, x3’) (x4, x4’) 

All these points lie on the ellipse.

Note the particle jumps around the
ellipse and does not move around
it continuously



Moving along a beam line

x

x’

x

x’
x

x’
s3

s1

s2

( β1, α1, ϒ1)
( β2, α2, ϒ2)

( β3, α3, ϒ3)

As we move along the beam line the 
ellipse inclination and eccentricity 
change, but the particle always lies on 
the ellipse.

...and the 
same in y,y’ 
of course.
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