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Abstract

We present the design and development of a compact 1on accelerator based on a Penning Ion Generator (PIG) 10n source for controlled irradiation of thin films. Simulation-
driven optimization using IBSimu and COMSOL guided the fabrication of key subsystems, including the 1on source, electrostatic quadrupole triplet, and Wien velocity filter.

_ The system delivers 1ons up to 50 keV with puA-level currents under high-vacuum conditions, offering a versatile, cost-effective platform for nanoscale materials engineering. )

Introduction Results & Discussion

* lon irradiation is a powerful tool for tailoring the structural and
electronic properties of thin films used in advanced functional
applications.

 Conventional accelerators are large and costly, limiting accessibility .
for laboratory-scale research.

* To overcome these challenges, a compact ion accelerator system
based on a Penning lon Generator (PIG) ion source has been (b)
developed.

* The objective is to design, simulate, and fabricate a cost-effective
platform that ensures stable ion beam extraction, precise focusing,
and mass-to-charge separation, enabling versatile applications in :
nanoscale materials engineering. so0d— . . : , ,
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 Beam extraction improves: Decreasing angle (a) increases extracted ion current.
 Transport optimization: lon beam current decreases with distance (D) as beam
focusing decreases.

Beam quality preserved: Mu-metal shielding suppresses fringe fields, minimizing
transport losses.
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Fig. 4. Simulation studies: (a) ion beam current vs. angle a, (b) ion beam current vs. distance, (c)

Koo g ) Target Chamber ion beam cyrrgnt VS. pla§ma e-Iectrode thickness using IBSimu; COMSOL results fo.r WVF show.ing

body  Extraction Wien Velocity Filter (d) magnetic field variation with shunt plate movement, (e) electric and magnetic field profiles
Electrode without mu-metal shielding, and (f) profiles with mu-metal shielding.
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Fig. 1. Design schematic of the in-house tabletop ion accelerator
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The accelerator was conceived as a compact, modular system
integrating four key subsystemes:

* Penning lon Generator (PIG) for stable ion production,

e Electrostatic Quadrupole Triplet (EQT) for precise beam focusing,

* Wien Velocity Filter (WVF) for mass-to-charge separation, and

* High-vacuum target chamber for irradiation studies.
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Fig. 5. Installed ion accelerator system showing assembly, vacuum performance, beam current, and
beam spot on aluminum foil.

Fig. 2. Major components of the tabletop ion accelerator: (a) Penning lon Source
for beam generation, (b) Electrostatic Quadrupole Triplet for focusing, (c) Wien

Velocity Filter for ion separation, and (d) Target Chamber for irradiation studies
. Energy range: 5 — 50 keV.

. lon species supported: H,, N,, O,, He etc..

. Beam current: From 1 nA to 3 pA.

. Beam size of less than 1 cm ensures controlled irradiation.

. Operating vacuum: better than ~107> mbar, ensuring high beam purity.
Transport stability: Achieved efficient focusing and separation with EQT & WVF.
Demonstrated a compact, reliable platform for thin-film irradiation experiments.

A simulation-guided approach ensured optimal performance:

* |BSimu optimized the plasma extraction region, enhancing ion yield
and reducing beam divergence.

e COMSOL Multiphysics modeled electric and magnetic fields,
enabling precise tuning of ion trajectories through the EQT and
WVF.
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N Conclusions
e s ow w w /A compact, cost-effective ion accelerator based on a PIG ion source was successfully designed,\
. . . . . simulated, and fabricated entirely in-house. Simulation-driven optimization ensured efficient
Fig. 3. (a) lon extraction simulation using IBSimu, and (b) beam transport X , 4 deli N 9 ol ,
through EQT and WVF modeled in COMSOL Multiphysics. e.am extraction, transport, and de |\./ery.. The sy§tem em.onstrat.es sjca g o.peratlon. over .a
| o | | | wide energy range and supports multiple ion species, enabling flexible irradiation studies. This
Following optimization, all subsystems were fabricated in-house using platform provides a practical laboratory-scale tool for nanoscale defect engineering and
stainless steel chambers, Teflon insulators, Neodymium magnets, and \materials research. /
high-voltage supplies. The components were integrated into a
compact tabletop assembly, with mu-metal shielding added to Refe rences

suppress fringe fields and maintain beam quality. ’ ~N
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