

High Resolution Optical Emission Spectroscopic Study of the ECR Plasma in the GTS-LHC Ion Source

Bichu Bhaskar, Detlef Küchler (CERN)

Introduction

Implementation of Optical Emission Spectrometer

Results from spectroscopic studies.

High resolution spectrum of lead and oxygen.

Conclusion

Motivation

- No non-invasive diagnostics yet on the GTS-LHC 14.5 GHz ECRIS ⇒ need for line-of-sight spectroscopy.
- Use optical spectroscopy as an input for automatisation of the ion source.
- Practical use: establish optical diagnostics as a routine monitoring and control tool for source performance and stability.

ECRIS: Introduction

 Resonance between external RF frequency and the cyclotron frequency of electrons along magnetic field.

Figure: Schematics of ECR ion source

- Step wise ionisation of atoms and molecules to produce Highly Charged Ions (HCIs).
- Highly charged ions are selected and accelerated downstream.

GTS-LHC ECRIS:Introduction

- Confinement: axial solenoids (3) + radial hexapole ⇒ topology
- 14.5GHz, pulsed 10Hz, 50% duty Afterglow mode
- Consists of two micro oven ports
- Beam delivery 24/7 from the source, mostly extracting Pb ions (oxygen buffergas)
- Three electrode extraction system.

GTS-LHC in CERN Injector Chain

Figure: GTS-LHC in CERN injector complex

Optical Diagnostics in ECRIS: Feasible but Challenging

• Feasibility:

- In ECRIS plasmas, electrons not only ionise but also excite atoms/ions.
- Excited states decay via **spontaneous emission**, giving photons:

$$\lambda = \frac{hc}{E_p - E_k}$$

 These photons exit the plasma and can be measured non-invasively with OES.

Challenges:

- Overlapping lines from many charge states and species.
- Strong magnetic field and geometry
- Intensity depends on multiple processes (EEDF, excitation, ionisation, charge exchange, transport) → interpretation is non-trivial.

Ideal peak

- A delta-like line (conceptual reference)
- Impurity detection
- Light intensity depends on ion density and the electron energy distribution function

Instrumental (Gaussian)

Finite instrument response produces a Gaussian profile.

Doppler broadening & Stark

Thermal motion broadens the line (Doppler); electric microfields add Lorentzian wings (Stark).

Ion temperature from Doppler width at λ_0 :

$$T_i = \frac{m_i c^2}{8 \ln 2 \, k_B} \left(\frac{\Delta \lambda_D}{\lambda_0}\right)^2$$

where m_i : ion mass, k_B : Boltzmann constant, c: speed of light, $\Delta \lambda_D$: Doppler FWHM, λ_0 : line rest wavelength.

Combined including Zeeman splitting

Final line shape includes instrumental, Doppler, Stark, and Zeeman.

Zeeman axial splitting (for σ^{\pm} components):

$$\Delta \lambda_{\sigma} = \frac{\lambda_0^2}{c} \frac{\mu_B}{h} g_{\rm eff} B$$
 \Rightarrow separation $= 2 \Delta \lambda_{\sigma}$

where μ_B : Bohr magneton, h: Planck's constant, $g_{\rm eff}$: effective Landé factor of the transition, B: magnetic field strength.

Optical spectroscopy: Diagnostic setup

Schematics of diagnostics

Experimental setup

Measurement results from Neon OES

- Why Ne? Single day run at LHC for Ne nuclear imaging.
- Measurement performed with ICCD gated at the centre of RF timing signal
- Calibration using low-pressure gas discharge Ne pen-ray lamps
- Ion temperature of Ne $^{1+}$: 7 \pm 4 eV
- All measured neutral Ne lines (585–650 nm) exhibited Zeeman splitting
- B field: $0.5182 \pm 0.005 \text{ T}$

High resolution OES of Ne¹⁺

Zeeman splitting in neutral Ne

Iso-magnetic field surface corresponding to neutral Ne emissions

- 3D B-field corresponding to coil currents: 1250/250/1220 A
- $B_{ECR} = 0.518T$
- Neutral Ne emission close to resonance zone

Iso-magnetic field surfaces corresponding to neutral Ne emission.

Measurement of lead and oxygen OES

Spectral modification with Pb introduction

First measurement of Pb OES

 Observed redistribution of oxygen emission lines when Pb is introduced.

Conclusion

- Implemented a high-resolution optical emission spectrometer, providing first diagnostic results toward routine, non-invasive monitoring of ECRIS performance.
- First measurement of Zeeman splitting in ECRIS which could also help to gain insight into spatial resolution of optical emissions in ECRIS.
- Measured well-resolved Pb optical emission lines in oxygen background.

Additional slide

Viewing angle

Intensity vs extracted current

ΔE distribution

