

(Magnetic) design of a hollow hexapole applicable to ECR charge breeder to mitigate the plasma contamination by sputtering

T. Thuillier ¹, J. Angot ¹, A. Cernuschi ¹

Outline

- Motivation
- Magnetic Design of a Hollow Hexapole
- Monte Carlo Simulation
- Discussion and Prospects

Motivation

Radioactive Ion Beam (RIB) Experiments Require Beam Purity

Charge Breeder Ion Source

Process selection

$$\frac{M}{\Delta M}$$

Applicable if:
$$\frac{Signal}{Noise}$$
 > Threshold

ECR CB Contamination

> Signal to Noise ratio is a critical parameter for ECRIS CB at low RIB intensity:

Signal (pps) 10^2 10^3 10^4 10^5 10^6	
Signal (pps) 10^2 10^3 10^4 10^5 10^6	5
For $\frac{M}{\Delta M} \sim 400$ Signal/Noise 0.01 0.1 1 10 100)
N+ RIB fraction 0.9% 9% 50% 91% 99%	6
For $\frac{M}{\Delta M} \sim 5000$ Signal/Noise 1 10 100 1000 1000 1000 N+ RIB fraction 50% 91 99% 99.9%	00
N+ RIB fraction $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3%

CARIBU (ANL) , TRIAC (TRIUMF)

The ions, accelerated by the plasma sheath, sputter the plasma chamber radial walls, expelling the metallic alloy compounds and its impurities

The atoms sputtered radially have a high chance to be ionized on flight passing through the plasma

Lambert's cosine law (Wikipedia)

Is there a way to mitigate this phenomenon?

How is contamination mitigated in Tokamaks?

The Ergodic divertor (magnetic limiter) is used to remove impurities from the main plasma through a zero field area

Can holes be made in an ECR hexapole?

A-ECR Design: 6 radial view ports, located where the plasma does not hit the wall

14 GHz LBNL AECR-U Ion Source

The answer is clearly yes!

Can material be added inside the cylindrical plasma chamber?

BERKELEY LAH

Symmetry of ECRIS plasma chamber

Q: Is a symmetric plasma chamber necessary for an ECRIS?

To investigate possible ExB quieting the VENUS plasma, an asymmetric aluminum insert of complex-shape was fabricated which can be electrically biased

Dan Xie, ICIS2021, TRIUMF, Canada, Sept 20-24, 2021

D. Xie, ICIS21,LBNL

breaking the cylindrical symmetry...

Innovative Resonator Ion Source (IRIS)

International Conference on Ion Sources (ICIS2021). September 20 - 24, 2021

G. Torrisi, ICIS21, LNS

Recipe for a 14 GHz hollow hexapole

...Start with an up to date HallBach type hexapole

Remove the 0°, enlarge the 90°, shrink the 60° and 30° magnets

X But Radial field is too weak

Add magnets where you can et voilà

Add magnets inside the cylindrical plasma chamber

Add extra magnet at large radius => radial confinement ok for 14 GHz

Checking the ions flow to the wall with a Monte-Carlo

Axial magnetic field (existing PHOENIX CB)

- He²⁺ Ions generated in the ECR zone volume
- T_{kin}=5 eV, random velocity direction
- Coulomb collision
 - \triangleright « Forceps Delivery » with $\nu_i \times 10$
 - 10⁶ particles, 220h CPU time

Hollow hexapole for the radial confinement

What about the extraction and injection flanges?

- Topic not treated here
- A cheap hint: machine the injection and extraction metallic surfaces to form concentric edges that will force the mean sputtered atom direction away from the dense plasma

Discussion and Prospects

- The hollow hexapole design appears applicable to 14 GHz ECR charge Breeders
- The ions simulated are well crashing in the hollowed hexapole part
- The ion hitting locations at wall are not symmetric with respect to the hexapole poles axis
 - magnetic Field Gradient Drift force?
- This structure has the potential to reduce significantly the atom yield sputtered toward the plasma
- Prospect 1: generate sputtered atoms from the obtained density at wall and assess the % of on-flight ionization through the ECR zone. Compare the results with an equivalent simulation using a standard hexapole.
- Prospect 2: Add electrons, find a self-consistent plasma solution including the plasma potential. Re-process the sputtered trajectories accordingly.

Thank you for your attention!

