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Introduction



The Forced Electron Beam Induced Arc Discharge ion source
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The FEBIAD ion source is typically
used for noble gases”®, halogens, and
molecules.

= Hot cathode emits electrons.

= Electrons pulled into the anode volume.
= Magnetic field confines the electrons.

= Electron impact ionization.

Multidimensional parameter space
available for operation.

*Only source available for the high ionization potentials



Part I: Numerical
lonization Model and
Validation for the
FEBIAD lon Source

With COMSOL Multiphysics ©



Electron transport simulations set the stage for the ionization model
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= The electric field magnitude is proportional
to the size of the black arrows which
indicate that the highest electric field occurs
close to both sides of the grid.

= The lower line plot shows the axial electric

potential. For an applied voltage of 200 V,
coil current of 30 A and electron current of
150 mA.

10.1016/j.nimb.2019.04.078



https://www.sciencedirect.com/science/article/abs/pii/S0168583X19302629

lonization map: Convoluting molecular flow simulations, electron trajectories and electron impact
ionization cross section

x1012 . . . . .
= |onization rate per unit volume inside

the anode volume for an applied
voltage of 200 V, coil current of 30 A,
and electron current of 150 mA.

The ionization is higher near the grid
as the electron density is higher at this
location. This region also matches the
place with the highest longitudinal
electric field as depicted by the size of
the black arrows.
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= The equipotential line defines the
potential barrier, and the blue dots
corresponds to the ion initialization as
computed from the ionization rate per
unit volume

Potential barrier contour
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lon beam formation and transport simulation results
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Simulated ion extraction reflects the parameters imposed and allow experimental comparison



Normalized ionization efficiency as a function of anode voltage and electromagnet current
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From experimental benchmarking to novel geometries via generative design
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(a) Nominal geometry (b) Initial geometry (c) Optimized geometry

Thermal and structural optimization to extract more electrons.

10.1016/j.nimb.2023.05.056


https://www.sciencedirect.com/science/article/abs/pii/S0168583X23002616

Part |I: Experiments

11



Manufacturing Novel Grid Geometry:

The target-ion source system for the SPES facility commissioning:
design, development and online testing 12

ammor i nae' - POStEr yesterday

= Additive manufacturing of Ta

= A standard geometry tested
at ISOLDE In 2023 as part
of a collaboration with
SPES.

= Monolith geometry for ARIEL

manufactured including anode
body

= To be tested next year at
ISOLDE




Parameter optimization for molecular
beam delivery
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Characterization of unwanted species for the ISAC FEBIAD

= At the same ion source *
settings, the molecules
and doubly charged ions
behave differently.
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https://iopscience.iop.org/article/10.1088/1742-6596/2743/1/012069
https://iopscience.iop.org/article/10.1088/1742-6596/2743/1/012069
https://iopscience.iop.org/article/10.1088/1742-6596/2743/1/012069

Beam development for 233U"'%F* at TRIUMF’s lon Trap for Atomic And Nuclear science (TITAN)

= Unirradiated Uranium
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Beam development for 238U19F+*
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Investigating fragments and reaction products
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Investigating fragments and reaction p cts
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Map In linear scale. Hatch indicates readback error
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UF* at A/q=257 shows strong contaminant
Ratio=4%
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Closing slits and tapping the magnet did not mitigate the
Isobaric contamination

Likely, uranium vapor was depleted as well. Increasing 7 124 21 28 35 42 49 56 &

0

the target temperature increased both peaks Coil current (A)
Proceeded to run F-scans with almost closed slits
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MR-TOF



After the iterative process. Unwanted species was suppressed
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Very promising results. A collaboration with TITAN will benefit us both. We get FEBIAD developments,
and they get radioactive molecules or new radioactive noble gases beams

20



Corollary from radioactive molecule development

= The FEBIAD can be selective

= At least can unfavored unwanted isobaric
molecules

= Methodology needs refinement if/when we
want to produce in-target radioactive lantanum
fluorides.
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Part |ll; Outlook
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So is the FEBIAD an electron impact ion source or a plasma ion source?

= The right question is how to exploit either regime.

= For long lived isotopes a plasma regime might be
more efficient, we need to study this at TRIUMF

* For fragile molecules a tunable electron beam
regime might prove more useful, this avenue has
already started at TRIUMF



ARIEL: new infrastructure, new opportunities

= Two Offline test stands

Target and ion source| [Diagnostic box 45° sector
with services and with Faraday cup electromagnet
extraction system and wire-scanners

ISAC offline test stand

rDiagnostic box

with Faraday cup,
wire-scanners, and
emittance meter

ARIEL offline test stand
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ARIEL: new infrastructure, new opportunities

= Two Offline test stands
= Four target stations
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ARIEL: new infrastructure, new opportunities

= Two Offline test stands
= Four target stations
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Summary

* A numerical model has been developed comprising the relevant
operational parameters of the FEBIAD ion source and from fundamental
principles.

* The ionization model allows proposing geometrical and operational
changes to increase the ionization efficiency while maintaining
beam quality.

« With all the simulation-based optimization results, the geometrical
changes can potentially increase the ionization efficiency 2 ten-fold.

« Tuning the FEBIAD, while using the appropriate diagnostics, isobaric
selection for molecules is possible.

Thank you!

Fernando Maldonado
maldonado@triumf.ca
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