

Prospects and challenges of the next generation highly-charged ECR ion source

Hongwei Zhao, Liangting Sun

Institute of Modern Physics, CAS, 730000, Lanzhou, China

Daniel Xie

Retiree of Nuclear Science Division, Lawrence Berkeley National Lab, Berkeley, USA

ICIS '25, September: 8~12, 2025

High performance 3rd generation ECRIS

SCECRIS@RIKEN: 28+18 GHz

SECRAL, SECRAL-II@IMP: 28/24+18 GHz

FRIB-SCECRIS: 28+18 GHz

Very successful development and operation!

30 years continuous development

State of the art ECRIS:

- \blacksquare ω_{rf} : 24~28 GHz
- Microwave power: 3~12 kW

Uranium beam record intensities produced by the 3rd G. ECRIS

Intense U beam production with technology advancement

Record uranium beam intensities produced by the 3rd G. ECRISs

U beam Charge State	SECRAL- 2023 (eμA)	Records as of 2022 (eµA)	Contributors as of 2022
33	640	450	SECRAL-II/IMP ¹
34	620	400	VENUS/LBNL ²
35	545	310	VENUS/LBNL, SECRAL-II/IMP
42	100	62.6	SCECRIS/RIKEN ³
46	61	36.2	SCECRIS/RIKEN
50	38	20.1	SCECRIS/RIKEN
54	19	10.4	SCECRIS/RIKEN
56	9.5	0.9	SECRAL-II/IMP
58	2.7	0.7	SECRAL-II/IMP

- 1. W. Lu et al., Rev. Sci. Instrum. **90**, 113318 (2019)
- 2. J. Benitez, et al., ECRIS2012, THXO02-talk
- 3. T. Nakagawa, Cyclotron'22, invited talk

3/40

The 3rd G. ECRIS enhances performance of HI accelerators significantly

4/40

Global heavy ion accelerators need more intense HCI beams

The 3rd G. ECRIS is not able to routinely deliver these beams for long-term operation!

HCI ECRIS can improve performance-cost effectively for a new HI accelerator

A CW SRF heavy ion linac for 150 Me/A Uranium beam, What ECRIS would be built?

(1). 28 GHz ECRIS. Low efficiency and lifetime problem for the stripper

HCI ECRIS generation evolution in terms of frequency and magnetic field

The next generation high-intensity HI accelerator demands the 4th even 5th G. ECRIS

The 4th and 5th G. ECRIS only for very high charge state and current

Estimated beam intensities produced by the 4th and 5th Gen. SC ECRIS

Ion	Charge state	4 th Gen. SC ECRIS	5 th Gen. SC ECRIS
species		45-60 GHz/20-30 kW	65-84 GHz/50-60 kW
		[eµA]	[eµA]
⁴⁰ Ar	16+	~1000	
- Ar	18+	~100	~300
¹²⁹ Xe	30+	~1000	
127Xe	42+	~100	~300
	45+	~20	~60
²⁰⁹ Bi	35+	~1000	
	45+	~300	~1000
	55+	~80	~250
238U	35+	~1000	
	46 +	~250	~800
	50 +	~160	~500
	56 +	~60	~200
	60+	~10	~50

Actually most of heavy ion accelerators do not need the 4th and 5th G. ECRIS. Only dedicated to high-intensity and high-power heavy ion accelerators

Schematic layout of the 4th and 5th Generation ECRIS

Technical Challenges of the 4th and 5th Generation ECRIS

Key parameters	Unit	4th G.	5 th G.	Challenges
frequency	GHz	45-60	65-84	High frequency high power microwave ECRHHigh power chamber cooling
Operational RF Power	kW	20~30	50-60 ?	
$\mathrm{B}_{\mathrm{ECR}}$	T	1.6-2.1	2.3-3	
$\mathbf{B}_{\mathrm{rad}}$	T	3.2-4.2	4.6-6	■ Reliable high field SC magnet with min-B field configuration
$\mathbf{B_{inj}}$	T	6.5-8.8	9.3-12	
$\mathbf{B}_{\mathrm{ext}}$	T	3.4-4.5	5.0-6.5	
Maximum B field at SC conductor	T	12-15	17-22	
Plasma Chamber ID	mm	Ø150	Ø200?	
\mathbf{U}^{56+}	рμА	1	4	■ Intense highly-charged ion beam production with small emittances

SC magnet structure of the 4th Generation ECRIS

45 GHz IMP-FECR

- Conventional structure
- Nb₃Sn single-wire or mini-cable
- Brittleness and strain dependence
- Complicated mechanical-structure
- Sophisticated and challenging for quench protection

- The closed-loop sextupole coil is worth exploring since it has many advantages.
- A successfully developed NbTi closed-loop coil may provide a new magnet structure for future ECRISs
- Closed-loop sextupole coil innovative structure
- Closed-loop coil provides radial + solenoid fields
- Higher field in hexagon "Corners" with hexagon chamber
- **■** Complex, labor-intensive and challenging for winding
- NbTi or Nb₃Sn

© Janilee Benitez, PIBHI25 presentation, Italy, April, 2025

45 GHz FECR: Nb₃Sn Magnet Cold-Mass Structure

Key technologies and tests completed in close collaboration with XSMT in China (since 2016)

45 GHz FECR : Completed full-scale SC magnet Coldmass

Completed full-scale FECR Nb₃Sn magnet coldmass

- Stress over-shoot during pre-loading (assembly)
- Sextupole coil leads broken

Nb₃Sn solenoids

NbTi sextupole

Full-scale FECR Nb₃Sn+NbTi hybrid-magnet coldmass

45 GHz FECR preliminary commissioning results with hybrid magnet

350 eμA ²⁰⁹Bi³⁵⁺ 6.5 kW 45GHz+ 5.0 kW 28GHz

45 GHz FECR

45 GHz LBNL MARS-D ECRIS NbTi-magnet under construction

45 GHz LBNL MARS-D

© Janilee Benitez, PIBHI25 presentation, Italy, April, 2025

SC magnet structure of the 5th Generation ECRIS

Nb₃Sn single-wire or mini-cable only for 65 GHz

Optimized closed-up coil structure (MARS-D upgraded version)

CCT or DCT sextupole under study (Canted or Discrete Cosine Theta)

HTS option for 70-84 GHz

Optimized closed-up coil structure for the 65 GHz 5th G. ECRIS

Optimized on basis of 45 GHz MARS-D

Both solenoids and sextupole coils are 2×4 Ruthford mini-cable with Ø0.62mm Nb₃Sn strand

B_{peak} = 12.2 T on Injection Solenoid

Inject Sol: $J = 280/165 \text{ A/mm}^2$

Mid Sol: J= 400 A/mm²

Extra Sole: J= 300 A/mm²

Stored Energy = 1.94 MJ

Sextupole hexagonal coil dimensions:

Minor ~ 110 mm, Major ~ 127 mm

Hexagon chamber: Min: 83 mm and Maj: 93 mm

Take advantages of the "V-shape" Sextupole and the hexagon plasma chambet

20

Χ

Preliminary magnetic field calculation for the 65 GHz 5th G. ECRIS (1)

Axial and Radial Fields

80

Preliminary magnetic field calculation for the 65 GHz 5th G. ECRIS (2)

HTS magnet for the 5th Generation ECRIS > 65 GHz

- Possible to realize $J_c > 1000 \text{ A/mm}^2$, B > 20T, T > 20K
- HTS conductors: REBCO, BSCCO (Bi-2223, 2221), IBS
- REBCO (+ BSCCO) commercially available, although expensive
- Interests from other communities (eg. fusion, NMR, high-field science)
 Demonstrations with REBCO high-field solenoids:
 - solenoids (28 T Bruker; 27 T IPP-CAS), toroidal coils (20 T)
- Key issues: degradation, quench losses and quench protection, cost
- ECRIS demands: field quality, reproducibility, stability
- Develop/validate REBCO cable + learn how to wind, insulate, load, cool, quench protection
- Many labs over the world involved in high field HTS magnet development

REBCO solenoid by IPP-CAS. 27 T, Ø20 mm

TIPLE

Conclusion

- Very successful development for the 3rd G. ECRIS (28 GHz) since 2000, being operated and had enhanced performance of the world-wide HI accelerators.
- The next generitation high-intensity HI accelerator demands the 4th (45-60 GHz) even the 5th (65-84 GHz) G. ECRIS for higher intensity and charge state with performance-cost effectiveness.
- Gyrotrons up to 100 GHz/100 kW are achievable.
- The 4th G. ECRIS could rely on LTS Nb₃Sn technology or innovative magnet-structure with NbTi technology, which are quite challenging technically for both option.
- The 5th G. ECRIS (> 65 GHz) can only rely on HTS magnet technology which needs very intensive R&D world-wide.
- The current engineering path by increasing magnetic field and operation frequency to enahnce performance of the highly-charged ECR source may end soon unless HTS magnet technology would achieve significant breakthrough.
- Fundamental physical path is the only way to continue the ECRIS future development on both the charge state and beam intensity

Thank you for your attention!

28 GHz SECRAL-II operation improved E & I of HIRFL significantly

HIRFL-SFC cyclotron (k=69) used as an injector to SSC or CSR

SECRAL-I delivered ²³⁸U⁴⁶⁺ beam to increase energy and intensity from SSC-linac and SSC.

