International Conference on Ion Source 2025

09/09/2025

# Theoretical and numerical study of the ECRIPAC accelerator concept

A. Cernuschi<sup>1</sup>, T. Thuillier<sup>1</sup> and L. Garrigues<sup>2</sup>

<sup>1</sup>Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3
<sup>2</sup>LAPLACE, Univ. de Toulouse, CNRS, INPT, UPS









# Outline and goals

### **ECRIPAC** (Electron Cyclotron Resonance Ion Plasma Accelerator)

- Plasma accelerator conceptualized by **R. Geller** in the 1990.
- Physical principles similar to ECR Ion Source.
- Scientific interest: Reduced accelerator dimensions, established technologies and simple design.

### Aim

 Numerically simulate ECRIPAC to assess device feasibility.

### **Methods**

- Theoretical calculations.
- Monte Carlo electron simulation.
- PIC simulations (work in progress).









# Electron heating in ECRIS

In ECRIS, electrons are confined inside a magnetic mirror and heated through Electron Cyclotron Resonance.

### Magnetic mirror confinement



$$\frac{1}{2}mv_{\parallel}^{2} + \frac{1}{2}mv_{\perp}^{2} = const$$

$$\mu = \frac{mv_{\perp}^{2}}{2B} \sim const$$



Particle reflected and

confined if 
$$\sin \theta \ge \sqrt{\frac{B_0}{B_1}}$$



$$abla {
m B} > 0$$
:  $v_{\parallel}$  converted to  $v_{\perp}$   ${
m VB} < 0$ :  $v_{\perp}$  converted to  $v_{\parallel}$ 

### **Electron Cyclotron Resonance (ECR)**

Electron  $e^-$  in magnetic field  $\vec{B}$  and transverse time varying electric field  $\vec{E}(t)$  rotating at  $\omega_{HF}$ .

 $ightharpoonset e^-$  gain  $\perp$  energy from  $\vec{E}(t)$  if  $\omega_{HF}=\Omega=rac{e_{B_{ECR}}}{m}$ 

 $e^{-}$ rotating at frequency  $\Omega$ 

















 $B_1$ 

### From ECRIS to ECRIPAC

# Relativistic **limitation for maximum** electron **energy** through ECR.

$$\Omega = rac{eB_{ECR}}{\gamma m} = rac{\Omega_0}{\gamma} 
eq \omega_{HF} \ \ if \gamma > 1$$

Relativistic energy leads to resonance loss. • ECRIPAC solution: magnetic mirror slowly increasing in time

### **Gyromagnetic autoresonance (GA):**

autoresonant acceleration of electrons in magnetic field **B(t)** smoothly growing in time.

$$ightharpoonup \gamma_e(t) pprox \frac{B(t)}{B_{min}}$$

✓ Experimentally verified!



What if I want to accelerate ions? Use the electron energy!

**Ion entrainment**: Local **difference in**  $i^+$  and  $e^-$  **density** arising from  $e^-$  displacement generates a space-charge field which **accelerates**  $i^+$ .

$$\triangleright v_{e\parallel} \approx v_{i\parallel} \rightarrow W_{e\perp,c} - W_{e\perp,PL} \approx W_{i\parallel,PL}$$

✓ Experimentally verified!









### ECRIPAC structure

#### Structure

- **Injector**: ion source (ECRIS).
- **GYRAC section:** resonant cavity, microwave injector, main coils and reverse field coil (magnetic mirror).
- PLEIADE section: beam transport tube, main coils.

# Working cycle phases:

- Gyromagnetic autoresonance (GA).
- Plasma compression (C).
- PLEIADE (PL).

GA C PL time











# Gyromagnetic autoresonance (GA) phase



### Role

Increase electron energy through gyromagnetic autoresonance.

• Plasma and HF wave injection at reverse field peak value.

$$B(t)$$
 sinusoidal increase in time  $B_{min} \leq B_{ECR}$  for stability reasons  $f_{HF} = 2.45~GHz$ 

$$\gamma_{GA} \approx \frac{B(t_{GA})}{B_{min}}$$
  $r_{orbit} = \frac{v}{\omega_{HF}} \le \frac{c}{\omega_{HF}} \approx 1.95 \ cm$ 









# Plasma compression (C) phase



#### Role

Compress electron cloud and further increase electron energy.

- **HF wave injection stops**, magnetic field continues to increase up to the main field restoration.
- **Plasma compressed** into a thin disk by electric field induced by time-varying magnetic field.
  - $\triangleright$   $\bigcirc n_e$  beneficial for ion acceleration.
  - Constant of motion in adiabatic approximation.  $\begin{cases} p^2/B = const \\ r^2B = const \end{cases}$

$$\gamma(t) = \left(1 + (\gamma_{GA}^2 - 1) \frac{B(t)}{B(t_{GA})}\right)^{\frac{1}{2}}$$











### Role

Ion  $(i^+)$  acceleration due to ion entrainment by electrons  $(e^-)$ .

Stability conditions for i<sup>+</sup> acceleration (charge Ze, mass  $Am_a$ )

- Magnetic field profile:  $\frac{dB_{PL}}{dz} < 0$  and  $\frac{d^2B_{PL}}{dz^2} > 0$ .
- $i^+$  acceleration >  $e^-$  acceleration
- Non shake out condition (NSO): Electron bunch stability (EBS): Coulomb repulsion  $\langle \nabla B \rangle$  force.

$$\left|\frac{\nabla B_z}{B_z}\right| \le \frac{2Ze}{m_a c^2 A} E_{sc} \qquad \left|\frac{\nabla B_z}{B_z}\right| \ge \frac{2e}{m_e c^2 (\gamma_{e,C}^3 - \gamma_{e,C})} E_{sc}$$

$$\left| \frac{\nabla B_z}{B_z} \right| \ge \frac{2e}{m_e c^2 (\gamma_{e,C}^3 - \gamma_{e,C})} E_{sc}$$











# Stability condition of the accelerator

More stringent limitations than expected:  $\gamma_{e,C}>>\gamma_{lim}$  and appropriate  $l_{PL}$ .









# Parameter space analysis

**Aim:** Obtain ions of desired energy with lowest  $\gamma_{e,\mathcal{C}}$  and  $l_{PL}$  ensuring stability.





charged ions with small mass over charge using a large and dense plasma.



Prototype design for a  $He^{2+}$  compact accelerator @  $f_{HF} = 2.45 \ GHz$ 

- $W_i/A = 9.53 \text{ MeV/nucl.}$
- $l_{PL} = 1.8 \text{ m}$
- $B_{max} = 5 \text{ T}; B_{fin} = 4.89 \text{ T};$  $B_{min} = 0.086 \text{ T}$









## Monte Carlo simulations













# Conclusions and perspectives

### **Conclusions**

- ECRIPAC great promises and lack of literature motivates further studies.
- Complexity of the system requires a study in successive steps
  - ✓ **Theoretical study**: more stringent limitations on stability condition than expected and highlighted influence of ECRIPAC parameters. Proposal of a prototype design for a He<sup>2+</sup> compact accelerator.
  - ✓ Monte Carlo simulation: validates theoretical treatment of electron behaviour inside ECRIPAC. Allowed to study effect of several parameters on electron behaviour.

### **Perspectives**

- Simulation of the entire plasma during the whole ECRIPAC operation.
  - Currently developing Particle-In-Cell (PIC) simulation using Smile:)



























