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saturation regign i o sa’Furation region ® Probe measurements confirmed an increase in electron temperature ® We will measure the ion temperature inside the ion source with and
.ece erajuon electric and ion saturation current during RF introduction. We conducted the without low-frequency RF using an ion-sensitive probe. Directly verify
field region experiments in the two cases Xe/Ar mixing and Xe/He mixing, the the ICR heating effect.
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DM#1 5 BPS ® The introducing of low frequency RF electromagnetic waves cause P
: higher multicharged ions beam increased, resulting in a change in the ® We will control the Xe gas flow rate and mix low-Z gases while
DM#2 average mass. Currently, the average mass is calculated using partial maintaining a constant total pressure to conduct experiments with
pressure, so its value remains unchanged even with RF . However, higher reproducibility.
when calculated the average mass using by the extracted beam
° currents derived from the CSD measurement, the average mass ® The heating tendency of He obtained from the emittance
increases, so the handling of electron density is under consideration. measurement. We will also confirm it by the ion-sensitive probe.

® The electron density in ECR plasma involves multiple ion species, so we
will examine how to handle it.
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