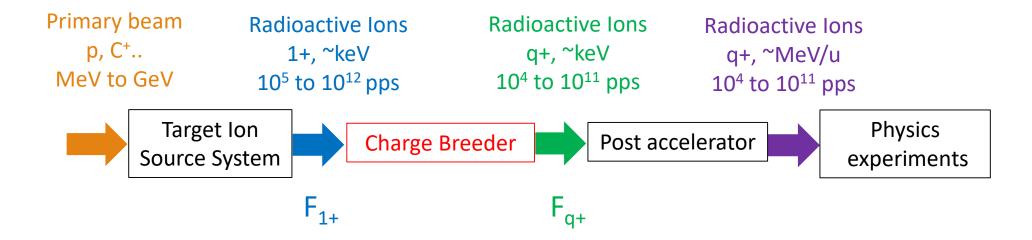


Plasma diagnostics of Charge Breeder ECR ion sources

- J. Angot ¹
- O. Tarvainen ²
- T. Thuillier ¹
- A. Cernuschi ¹

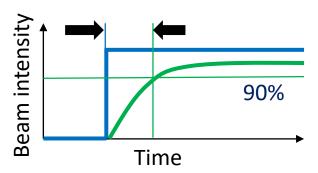
and all co authors of related studies


Outline

- Introduction
- PHOENIX ECR charge breeder
- LPSC 1+N+ test bench
- ECR CB plasma studies
 - Fly through ions
 - Captured ions
- Conclusion

Isotope Separation On Line (ISOL) scheme

ECR – Charge Breeders developed since the 1990s Based on 2nd gen. min-B ECRIS, mainly characterized by:

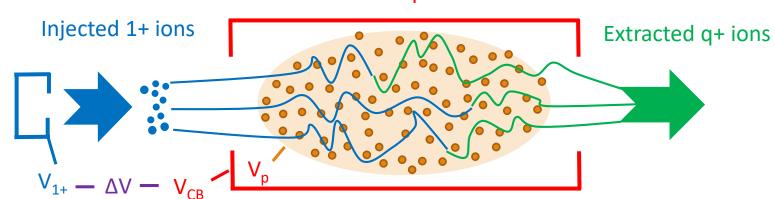

Efficiency on charge state q:

$$\eta_q = \frac{F_{q+}}{F_{1+}}$$

<u>Total efficiency</u>:

$$\eta_g = \sum_q \eta_q$$

<u>Charge breeding time</u>:



Capture curve – He plasma

ECR-CB plasma

$$S_{ab} = \frac{\left\langle \Delta v_{a,||} \right\rangle}{\Delta t} \qquad S_{ab} = -\frac{n_b}{4\pi\varepsilon_0^2} \left[\frac{q_a q_b e^2}{m_a \langle v_b \rangle} \right]^2 \left(1 + \frac{m_a}{m_b} \right) R(u_{ab}) ln \Lambda$$

$$R(u_{ab}) = \frac{2}{\pi^{1/2}} \frac{1}{u_{ab}^2} \int_0^{u_{ab}} x^2 e^{-x^2} dx \qquad u_{ab} = \frac{v_{a,||}}{\langle v_b \rangle}$$

$$R(u_{ab})$$
 maximum when u_{ab} =1 so when $v_{a,||} = \langle v_b \rangle$

a injected species, b plasma species

n density, q charge, m mass, v velocity, ln ∧ Coulomb logarithm

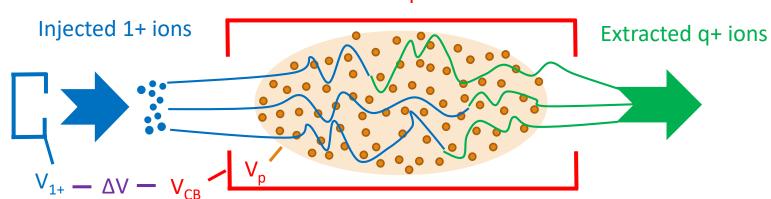
Considering a Maxwellian distribution for the plasma ions speed:

$$|\Delta V|_{opt} = \frac{4m_{1+}}{\pi m_i} \frac{kT_i}{e} + V_p$$

Charge state distribution at the CB extraction depends on:

Ionisation rate :
$$n_e * \langle \sigma v \rangle^{inz}$$

Charge exchange rate :
$$n_0 * \langle \sigma v \rangle^{cx}$$


$$\langle \sigma v \rangle = \int_0^\infty \sigma(v) v f(v) dv$$

Confinement time :
$$au$$

Capture curve – He plasma

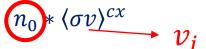
ECR-CB plasma

$$S_{ab} = \frac{\left\langle \Delta v_{a,||} \right\rangle}{\Delta t} \qquad S_{ab} = -\frac{n_b}{4\pi\varepsilon_0^2} \left[\frac{q_a q_b e^2}{m_a \langle v_b \rangle} \right]^2 \left(1 + \frac{m_a}{m_b} \right) R(u_{ab}) ln \Lambda$$

$$R(u_{ab}) = \frac{2}{\pi^{1/2}} \frac{1}{u_{ab}^2} \int_0^{u_{ab}} x^2 e^{-x^2} dx \qquad u_{ab} = \frac{v_{a,||}}{\langle v_b \rangle}$$

$$R(u_{ab})$$
 maximum when u_{ab} =1 so when $v_{a,||} = \langle v_b \rangle$

a injected species, b plasma species


n density, q charge, m mass, v velocity, ln ∧ Coulomb logarithm

Considering a Maxwellian distribution for the plasma ions speed:

$$|\Delta V|_{opt} = \frac{4m_{1+}kT_i}{\pi m_i} + V_p$$

Charge state distribution at the CB extraction depends on:

$$n_e * \langle \sigma v \rangle^{inz} \rightarrow v$$

$$\langle \sigma v \rangle = \int_0^\infty \sigma(v) v f(v) dv$$

In 2010, European ISOL context:

- Short term: upgrade of CERN-HIE ISOLDE, development of GANIL SPRIRAL2 and LNL SPES
- Longer term: EURISOL project aimed to enhance the RI intensities by 10 to 100
 - European "Enhanced Multi-Ionization of short-Lived Isotopes at EURISOL" (EMILIE) project to increase the EBIS and ECR charge breeder performances

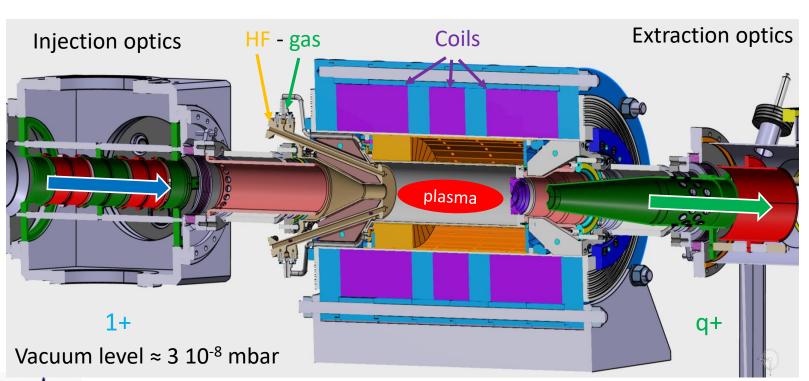
CERN - GANIL - JYFL - LNL - LPSC — Warsaw University laboratories

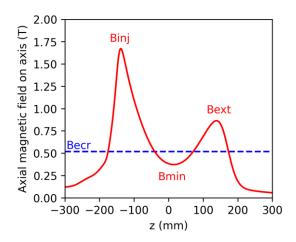
ECR-CB : Efficiency 3 - 10%, Total efficiency 50 - 60% possible improvement of capture – performances

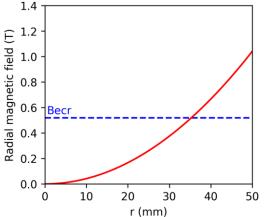
- > Better knowledge of the plasma characteristics (electron ion densities, energy distributions, plasma potential..)
- > Experimental campaigns with the LPSC ECR-CB and "1+N+" test bench
- Collaboration has been ongoing: GANIL JYFL LNL LPSC, support by CNRS IN2P3 institute

PHOENIX ECR Charge Breeder

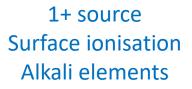
Developed since ~2000

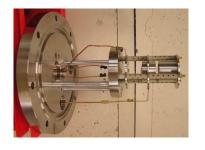

Min-B ECRIS modified for 1+ ions injection


- 14.5GHz, 200 800W
- 3 coils
- 1 sextupole


3 versions installed at GANIL, LNL and TRIUMF + 1 LPSC for R&D

- Support gas selection + gas dosing
- Coils
- HF power
- ΔV



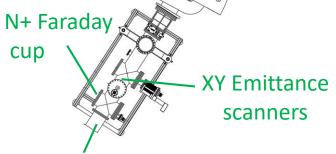


GRENOBLE | MODANE

LPSC 1+N+ test bench

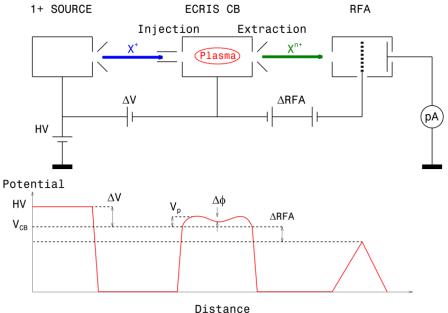
N+ beam line

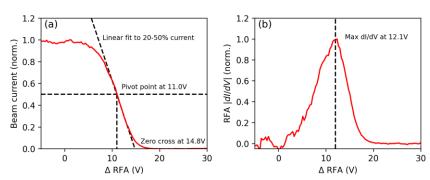
Charge N+ mass separator breeder /



1+ mass separator

1+ beam line



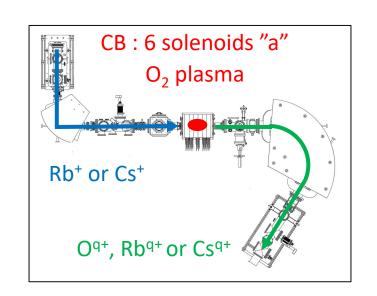


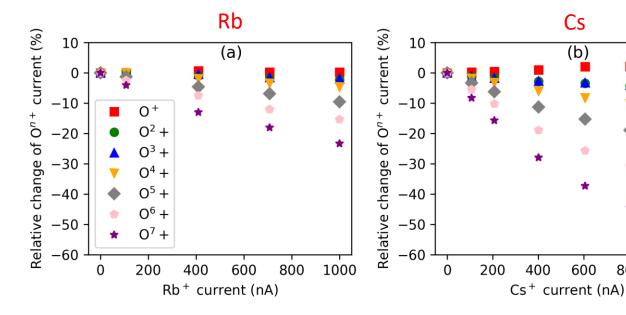
JYFL Retarding Field Analyser

1+N+ electrical configuration

RFA: plasma potential estimate

CB ECR plasma studies: plasma perturbation by 1+ ions injection

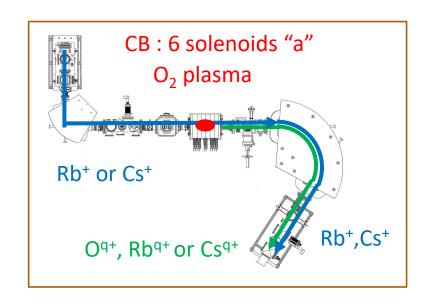

Cs

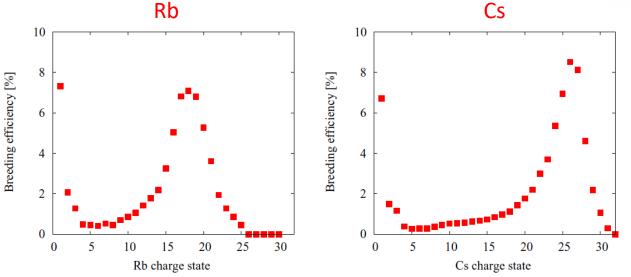

800

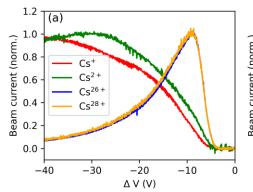
1000

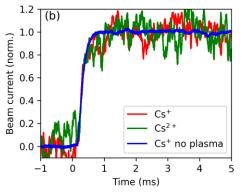
Purpose: study the effect of 1+ beam injection on plasma ions

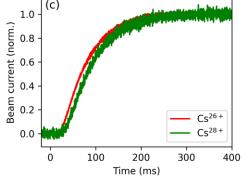
Injection of different masses and increase of 1+ beam intensity




- Oq+ beam intensity drop dependant on 1+ mass and beam intensity
- No increase of low charge states
- Time scale of Oq+ decrease identical to CB time of Rb or Cs
 - Gas mixing effect: Coulomb collisions leading to the thermalization of injected ions and heating of plasma ions
 - Mitigate the perturbation caused by the 1+ beam injection for later experiments: low 1+ beam intensity
 - \triangleright CB efficiency optimized when $m_{ini}/m_{plasma} > 5$

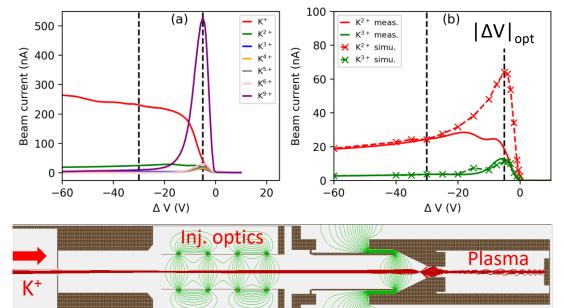

CB ECR plasma studies : fly through ions





High values of 1 - 3+ when comparing with min-B ECRIS

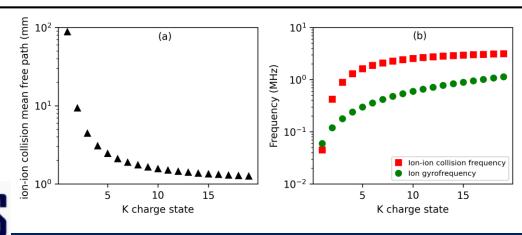
- Capture curve : different low high charge state
- CB Time : different low high charge state
- Some injected ions fly through the plasma
- ➤ In flight ionisation to 2+ 3+


10

CB ECR plasma studies : fly through ions

CB configuration: large diameter (recent measurements)

K+ charge breeding, He plasma



- 2 ΔV domains
- IF ionisation fraction to $2+\rightarrow$ ne and λi estimate, at $\Delta V = -30V$
- Simion model to simulate
 - the 1+ beam injection
 - in flight ionisation in ECR zone, with a Monte Carlo method
- $|\Delta V|_{opt}$ corresponds to maximum IF ionisation to 2+

$$n_e = \frac{v_i p}{\langle \sigma v_e \rangle dl}$$
 $\lambda_i = \frac{v_i}{n_e \langle \sigma v_e \rangle}$

- $\langle \sigma v_e \rangle$: from literature
- p: ionisation probability
- **dl**: unit length
- **λ**: mean free path

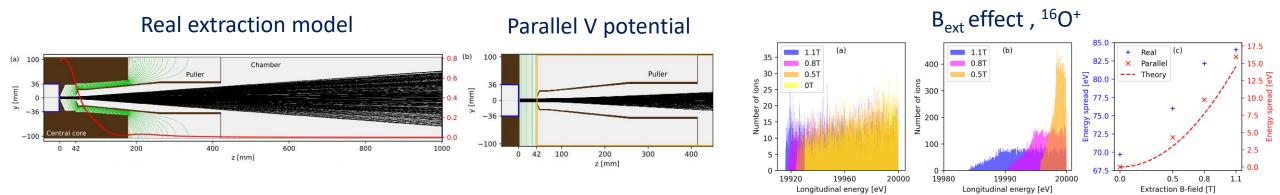
$$n_e \approx 8 \ 10^{10} \text{cm}^{-3}, \ \lambda_i \approx 2500 \text{mm}$$

At $|\Delta V|_{opt} = -5.0V$:

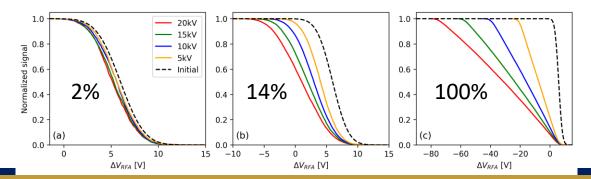
Estimation of ion-ion collision mean free path

$$\lambda_c = -\frac{L}{\frac{L}{\lambda_i} + \ln(\frac{I_{1+ext}}{I_{total}})}$$

- I_{1+ext} : 1+ fly through intensity fraction
- I_{total}: total extracted particle current

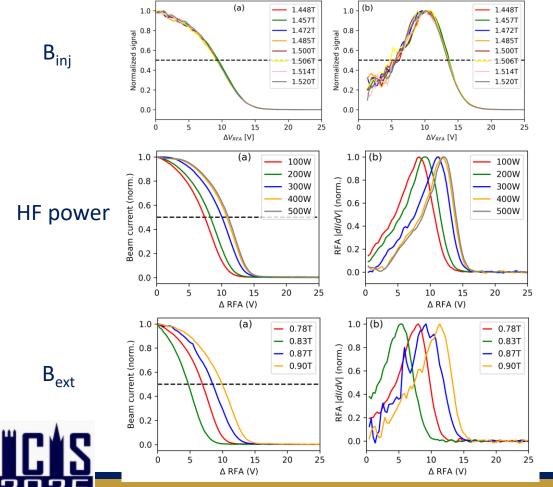

- $\lambda_c \approx 88.4$ mm
- ion-ion collision freq. vs ion gyrofrequency

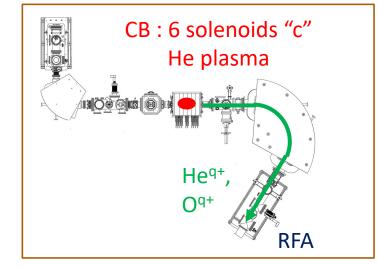
CB ECR plasma studies: plasma potential estimate



1. Study the parameters acting on the longitudinal energy spread of extracted ions (SIMION + IBSimu simulations) Bfield, Electrostatic potential, Ion mass, charge state, initial longitudinal energy, energy spread

- > Electrostatic potential (extraction electrodes and plasma meniscus) predominant
- 2. RFA simulations for plasma potential value estimate (ideal RFA)
 - ➤ Heavy collimation allows studying the plasma properties ie plasma potential and ion temperature



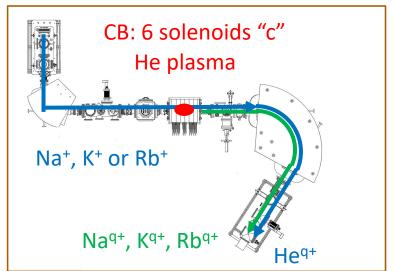

CB ECR plasma studies: plasma potential

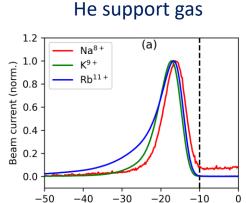
Purpose: estimate the CB plasma potential for capture studies

- Improvement of the JYFL RFA resolution with smaller mesh grid
- parametric studies on HF power, Binj, Bmin, Bext, Gas dosing

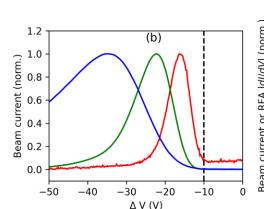
- Microwave power
- B_{ext}
- Both parameters influence the dynamics of cold electron population
- Qualification of the RFA for plasma potential estimation

CB ECR plasma studies: the optimum 1+ beam capture

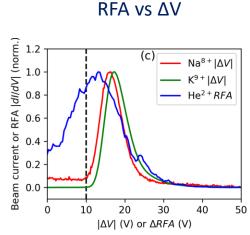

$$|\Delta V|_{opt} = \frac{4m_{1+}}{\pi m_i} \frac{kT_i}{e} + V_p$$


From experimental results:

- $m_{1+}/m_i > 5$ for good ECR CB efficiency
- Ion temperature in ECRIS plasma 5 28eV (optical spectroscopy measurements)
- \rightarrow $|\Delta V|_{opt} > 50V$ for Na⁺ injected into a He plasma, even considering $V_p = 0V$
- \triangleright 5 15 V values are typically measured

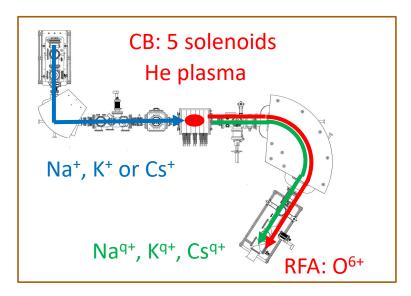

Proposition of new model : $|\Delta V|_{opt} = V_p$

1st term mass dependency study

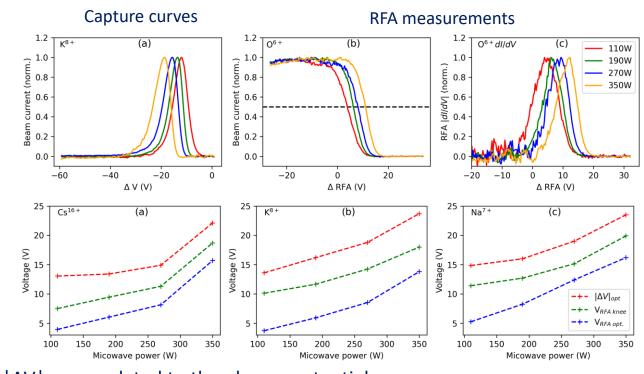


Measurement

Curves reconstruction

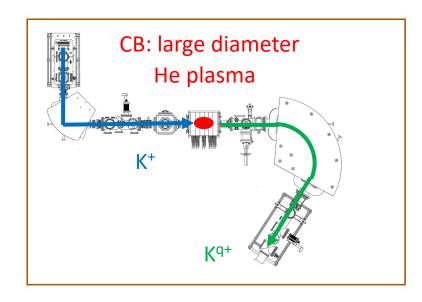

- Similar behavior for H₂ as support gas
- ightharpoonup Weak dependency of $|\Delta V|_{opt}$ on mass ratio
- Plasma potential from RFA → minimum ΔV providing HCS efficiency

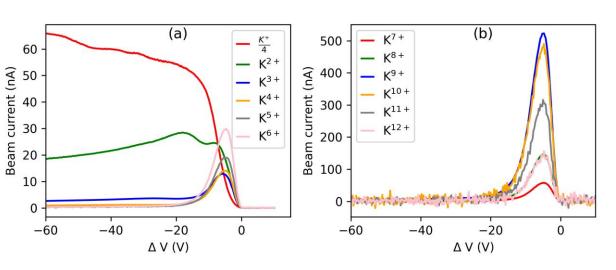
CB ECR plasma studies: the optimum 1+ beam capture



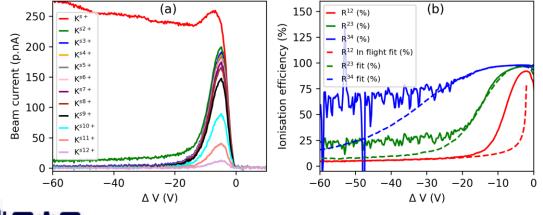
2nd term: plasma potential dependency

$$|\Delta V|_{opt} = \frac{4m_{1+}}{\pi m_i} \frac{kT_i}{e} + V_p$$



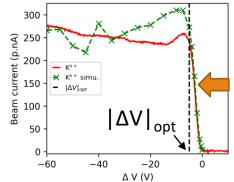

- $|\Delta V|_{opt}$ correlated to the plasma potential
- Vp always lower than $|\Delta V|_{opt}$
- |ΔV|_{opt} also poorly dependant on masses
 - Corroborate the new model
 - Offset: mirror field, injected beam emittance. Plasma potential not symmetric (inj/ext)?
 - $|\Delta V|_{opt}$ independent of plasma ion temperature (T_i estimation not possible)

CB ECR plasma studies: the capture curve profile



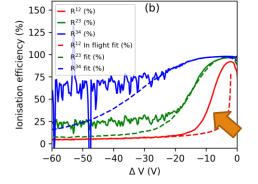
Careful measurement of K⁺ - K¹²⁺

- "Delay" of K⁺
- "Shift" of $|\Delta V|_{opt}$

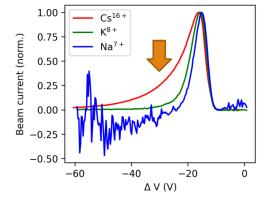


- K^{S+} signals
 - $ightharpoonup K^{s2+}$ close to HCS capture curve ightharpoonup 1+ to 2+ ionisation important
 - ➤ High efficiency then charge exchange at high charge state
- $R^{q_{-}q+1}$ ratios : $R^{12} = K^{s2+}/K^{s1+}$
 - > Fit with in flight ionisation (red dashed)

CB ECR plasma studies: the capture curve profile



Total extracted intensity fit with simulation



Ionisation efficiency

Rq_q+1

Capture curve of different masses

K^{S1+} fit with simulation signal

- gives: $V_p = 1.55V$, Espread $\approx 1.0V$
- Rising shape of the curve well reproduced by injection simulation
- Optimum injection corresponds closely to where a maximum of ions can pass the injection mirror and plasma potential

Conversely, ion speed must be as low as possible for ionisation to 2+

- Decay shape of the capture curve mainly driven by ionisation to $2+(R^{12})$
- Reinforced by the shape of the decay as a function of ion mass: multiionisation efficiency proportional to ion speed (at given ΔV the speed differs as a function of mass)
- \blacktriangleright $|\Delta V|_{opt}$ is at compromise value between the number of injected ions and their speed
- → Extensive simulation studies by Dr A. Galatà, see poster <u>"Numerical Analysis of the Influence of Plasma Parameters on the 1+ Beam Capture in the ECR-based Charge Breeder"</u>

CB ECR plasma studies : short pulse experiments

Purpose: study the charge breeding time and dynamics of HCS ions production

> The plasma characteristic times studied from the balance equation system:

$$\frac{dn^q}{dt} = \pm \langle \sigma v \rangle_{q-1 \to q}^{inz} n_e n^{q-1} - \underline{\langle \sigma v \rangle_{q \to q+1}^{inz} n_e} n^q + \underline{\langle \sigma v \rangle_{q+1 \to q}^{cx} n_0} n^{q+1} - \underline{\langle \sigma v \rangle_{q \to q-1}^{cx} n_0} n^q - \underline{\frac{n^q}{\tau^q}} n^q - \underline{\frac{n^q}$$

Ionisation time
$$\tau_{inz}^q = \left[n_e \langle \sigma v \rangle_{q \to q+1}^{inz}\right]^{-1}$$

Ionisation time $\tau_{inz}^q = \left[n_e \langle \sigma v \rangle_{q \to q+1}^{inz}\right]^{-1}$ Charge exchange time $\tau_{cx}^q = \left[n_0 \langle \sigma v \rangle_{q \to q-1}^{cx}\right]^{-1}$

Confinement time au^q

Equation translates to
$$\frac{d}{dt}I^q = a_qI^{q-1} - b_qI^q + c_qI^{q+1}$$
 for extracted beam intensities

Development of the "CT method" based on:

Experiments:

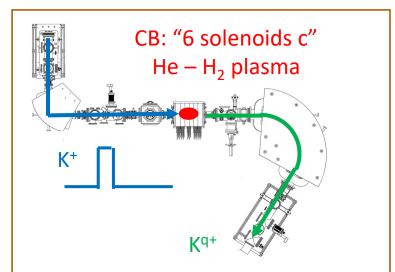
Classical method of short pulse injection into ECR plasma, init R. Pardo

- 1+ beam short pulse injection into the CB and measurement of extracted transients over consecutive charge states Numerical analysis:
 - Fit of the transients providing a_a b_a c_a parameters
 - Optimisation procedure on (ne, $\langle E_e \rangle$) to resolve reduced equations and determine τ_{inz}^q , τ_{cx}^q , τ_{e}^q , τ_{e}^q

Method advantages:

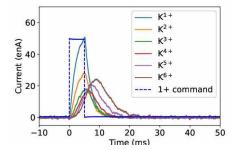
- Precise tuning of injected beam intensity and energy
- Reduced number of assumption: ions confinement and CX models, n₀
- Accounts for ionisation rate uncertainties
- Local solutions in terms of (ne, $\langle E_e \rangle$)

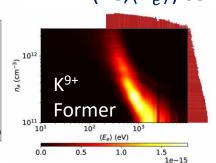
Method caveats:

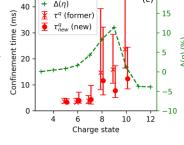

- at least 5 consecutive transients
- high uncertainties on ionisation rates

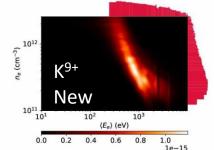
CB ECR plasma studies : short pulse experiments

Purpose: study the charge breeding time and dynamics of HCS ions production




	Configuration	
Parameter	Former	New
B _{inj} (T)	1.58	1.57
B_{\min} (T)	0.45	0.44
B_{ext} (T)	0.83	0.84
μW power (W)	504	530
Support gas species	$_{\mathrm{He}}$	H_2
$P_{\rm inj}~(\times 10^{-8}~{\rm mbar})$	9.0	13.6
K ⁺ intensity (nA)	710	500
Injection pulse width (ms)	5	5





 $(ne,\langle E_e \rangle)$ solutions sets

K9+ efficiency enhanced by:

- Increase of τ_{inz}^q and decrease of τ_{cx}^q for high q

 CSD shift to lower q
- Decrease of τ^q \rightarrow faster extraction
- ➢ Pile up of K⁹⁺ (closed shell)
- CSD driven by the characteristic times of all q

Other experiments carried out with CT method:

- 2 species injection in same plasma conditions to reduce uncertainties
- Parametric studies on the CB tuning (gas, HF power, B_{min} ..)

Conclusion

The different studies allowed a better understanding of the Charge Breeding process

- reduced effect of Coulomb collisions, ionisation to 2+ appear to be a key parameter
- Slowing down by plasma potential, which was found to be dependent on HF power and B_{ext}

and estimating ECR plasma parameters using classical diagnostics and 1+ beam as a probe

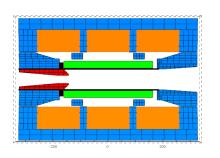
- Fly through : ne , λi , λc
- Capture: plasma potential, plasma potential symmetry
- Pulse: characteristic times, CSD build up

Future experiments: add optical spectroscopy on the CB to monitor the plasma populations

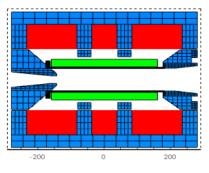
Improve ECR-CB technics?:

- increase plasma length and plasma density should enhance the capture and efficiencies
- Contaminants reduction : → see following Dr T. Thuillier presentation "Design of a hollow hexapole applicable to ECR charge breeder to mitigate the plasma contamination by sputtering"

Thank you for your attention

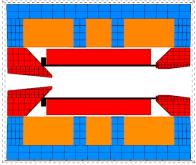

Additional slides

PHOENIX ECR Charge Breeder


6

solenoids	"a"	August 2010	HF coupling, Stabilize the plasma
			Injection electrode, HF blocker
	"b"	March 2014	Injection optics
			Injection Bfield symmetry
	"c"	June 2016	Enhance confinement

- Efficiencies 10 20 %CB Time 5 30 ms/q
- Stable plasma
- HF power reduced
- Good Reproducibility


<u>solenoids</u>	January 2023	Ease tuning, improve injection and
		extraction optics
		 Yoke and coils rearrangemer

- 1+ beam capture experimentsBeam purity experiments
- nent
- New plasma chamber

Injection plug, rings position

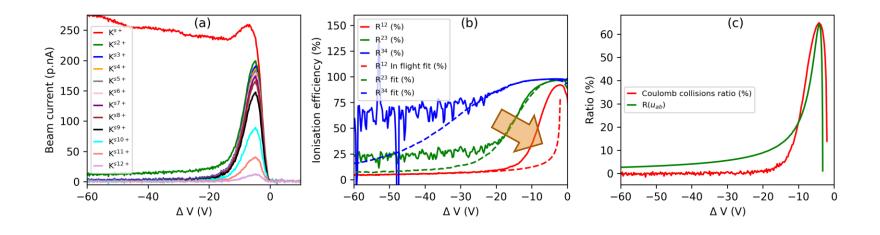
New plugs

Plasma chamber failure

Large diameter July 2024 Increase high charge state

Enhance beam purity

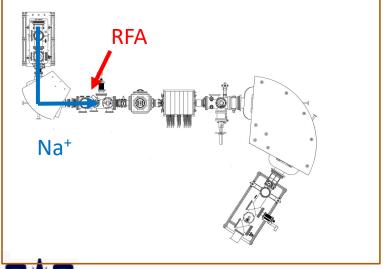
CB central core modification:

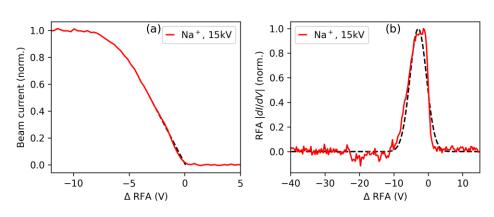

- Sextupole
- Chamber
- Plugs

UHV design

16% efficiency K⁹⁺ Hydrogen plasma 11.4% efficiency K⁹⁺ Helium plasma

CB ECR plasma studies: the plasma potential symmetry

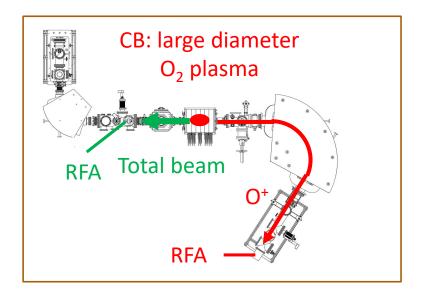

Purpose: compare the plasma potential value at both sides of the ECR-CB



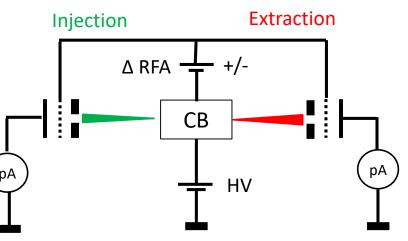
Development of a new RFA

- Compact Ø80mm L60mm
- planar, single very thin grid (~40μm mesh size)
- Grid potential > 25kV
- Mounted on bellow for precise alignment
- 2 copies

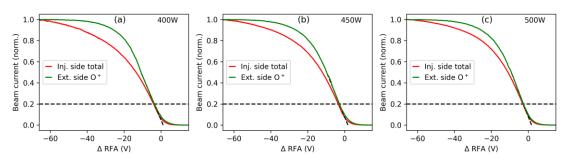
Resolution measurement in the 1+ beam line



- Na⁺ beam
- At 15kV, $\sigma = 2.4V$
- $\frac{\Delta E}{E} = 0.16 \ 10^{-3}$


CB ECR plasma studies: the plasma potential symmetry

Purpose: compare the plasma potential value at both sides of the ECR-CB



Electrical configuration Injection

- Careful alignment of RFAs
- 2 RFA grids connected to the same supply "ΔRFA", referenced to CB
- Same cable model, same length

Variation of CB HF power, record of RFA curves

Power (W)	400	450	500
Plasma Pot. Inj (V)	1.2	1.8	1.8

- Low plasma potential value around 1.5V
- Small effect of HF power on plasma potential here
- Behaviour due to new large diameter configuration with Aluminum parts
- Extraction PP found at higher value +0.5V
- But measurement very sensitive to alignment