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•Lecture inherited from Monica Wielers 

• Ideas, material and more from Andrea Venturi, Francesca Pastore and many others 

•
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•Physics TDAQ is 101 years old! 

• Phys. Rev. 13, 272 , 1st April 1919 

“… visual or audible methods of counting are quite 

trying on the nerves … A self-recording device 

would therefore be an obvious improvement.” 

•A lot has happened since then 

• But trigger and DAQ can still be quite trying 

on the nerves 

Thanks to E. Meschi and D.Newbold for spotting this!
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Outline

1. Introduction 

1.1. What is DAQ? 

1.2. Overall framework 

2. Basic DAQ concepts 

2.1. Digitization, Latency 

2.2. Deadtime, Busy, Backpressure 

2.3. De-randomization 

3.  Scaling up 

3.1. Readout and Event Building 

3.2. Buses vs Network 

4. DAQ Challenges at the LHC
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•Data AcQuisition (DAQ) is 

• the process of sampling signals  

• that measure real world physical conditions  

• and converting the resulting samples into digital numeric values 

that can be manipulated by a PC 

•Ingredients: 

• Sensors: convert physical quantities to  

electrical signals 

• Analog-to-digital converters: convert conditioned sensor signals to digital values 

• Processing and storage elements
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What is DAQ?
[Wikipedia]
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•DAQ is an heterogeneous field 

• (aka the dark arts) 

• Boundaries not well defined 

•An alchemy of 

• physics  

• electronics  

• computer science 

• hacking  

• networking  

• experience 

•Money and manpower matter as well
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What is DAQ?
[Real life]
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•Main role of DAQ 

• process the signals generated in a detector  

• and saving the interesting information on  

permanent storage 

•What does it mean interesting? 

• When does this happen? 

•We need a trigger! 

 

Trigger Lecture 

• Dr. J.Kirk 
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Something interesting
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•Either selects interesting events AND 
• rejects boring ones, in real time 

• Selective: efficient for “signal”  

and resistant to “background” 

• Simple and robust 
‣ Must be predictable at all times! 

• Fast 
‣ Late is no better than never 

•With minimal controlled latency 

• time it takes to form and distribute its decision 

•The trigger system generates a prompt signal used to start the data-acquisition processes 

• To be distributed to front end electronics
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Trigger!
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•Trigger path 

• From dedicated detectors to trigger logic 

•Data path 

• From all the detectors to storage  

• On positive trigger decision

Trigger and DAQ
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DAQ

Triggered: data is readout from detector only when a trigger signal is raised 

 

 

 

 

  

Triggerless: the detector push data at its speed and the downstream DAQ must keep the pace
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Trigger(less)

DAQ

trigger
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•Gather data produced by detectors 

• Readout 
•Form complete events  

• Data Collection and Event Building 

•Possibly feed other trigger levels  

• High Level Trigger 

•Store event data  

• Data Logging 
•Manage the operations 

•  Run Control, Configuration, Monitoring  
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DAQ duties

Data Flow
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•FPGAs are becoming the bread&butter of 

TDAQ systems 

• Signal processing, data formatting, 

parallelizable tasks (pattern recognition), 

machine learning, ...   

•FPGA Programming Lecture 
• Dr. K.Harder 

15

Field Programmable Gate Arrays
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Configuration 
▶ The data taking setup 

Control 
▶ Orchestrate applications  

participating to data taking 
▶ Via distributed  

Finite State Machine 
Monitoring 
▶ Of data taking operations 
▶ What is going on?  
▶ What happened?  

When? Where?

19

The glue of your experiment
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Outline

1. Introduction 

1.1. What is DAQ? 

1.2. Overall framework 

2. Basic DAQ concepts 

2.1. Digitization, Latency 
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3.1. Readout and Event Building 
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with a toy model
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•Eg: measure temperature at a fixed frequency 

• Clock trigger 

•ADC performs analog to digital conversion, digitization (our front-end electronics) 

• Encoding analog value into binary representation 

•CPU does  

• Readout, Processing, Storage

21

Basic DAQ: periodic trigger
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•System clearly limited by the  

time τ to process an “event” 

• ADC conversion +  

CPU processing +  

Storage  

•The DAQ maximum sustainable  

rate is simply the inverse of τ, e.g.:  

• E.g.: 𝜏 = 1 ms  ® R = 1/𝜏 = 1 kHz
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Basic DAQ: periodic trigger
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TRIGGER

•Events asynchronous and unpredictable 

• E.g.: beta decay studies 

•A physics trigger is needed 

• Discriminator: generates an  

output digital signal if amplitude  

of the input pulse is greater  

than a given threshold 

•NB: delay introduced  

to compensate for the  

trigger latency  

• Signal split in trigger and data paths 
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TRIGGER
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TRIGGER
•Events asynchronous and unpredictable 

• E.g.: beta decay studies 

•A physics trigger is needed 

• Discriminator: generates an output digital signal 

if amplitude of the input pulse is greater than a 

given threshold 

•NB: delay introduced to compensate for the  

trigger latency  

• Signal split in trigger and data paths 
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate f = 1 kHz, i.e. l = 1 ms  

• and, as before, τ = 1 ms

TRIGGER
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate f = 1 kHz, i.e. λ = 1 ms  

• and, as before, τ = 1 ms

Probability of time (in ms)  
between events for average  
decay rate of f=1kHz → l=1ms

TRIGGER
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate f = 1 kHz, i.e. λ = 1 ms  

• and, as before, τ = 1 ms

Probability of time (in ms)  
between events for average  
decay rate of f=1kHz → l=1ms

TRIGGER
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate f = 1 kHz, i.e. λ = 1 ms  

• and, as before, τ = 1 ms

What if a trigger happens when 
the system is busy processing the 
previous event

TRIGGER
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•If a new trigger arrives when the system is  

still processing the previous event 

• The processing of the previous event  

can be screwed up

What if a trigger happens when 
the system is busy processing the 
previous event

TRIGGER
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•For stochastic processes, our trigger and daq system needs to be able to: 

• Determine if there is an “event” (trigger) 

• Process and store the data from the event (daq) 

• Have a feedback mechanism, 

to know if the data processing pipeline  

is free to process a new event: 

busy logic

31

Thinking…
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TRIGGER

•The busy logic avoids triggers while the system 

is busy in processing 
•A minimal busy logic can be implemented with  

• an AND gate  

• a NOT gate 

• a flip-flop (flip-flop) 

•
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TRIGGER

•The busy logic avoids triggers while the system 

is busy in processing 
•A minimal busy logic can be implemented with  

• an AND gate  

• a NOT gate 

• a flip-flop (flip-flop) 

•
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TRIGGER

•Start of run 

• the flip-flop output is down (ground state)  

• via the NOT, one of the port of the AND gate is 

set to up (opened)  

•i.e. system ready for new triggers
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 

• One of the AND inputs is now steadily down 

(closed) 

•Any new trigger is inhibited by the AND gate 

(busy)
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 

• One of the AND inputs is now steadily down 

(closed) 

•Any new trigger is inhibited by the AND gate 

(busy)
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 

• One of the AND inputs is now steadily down 

(closed) 

•Any new trigger is inhibited by the AND gate 

(busy)
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TRIGGER

•At the end of processing a ready signal is sent 

to the flip-flop 

• The flip-flop flips again 

• The gate is now opened 

• The system is ready to accept a new trigger 

•i.e. busy logic avoids triggers while daq  

is busy in processing 

• New triggers do not interfere w/ previous 

data 
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•So the busy mechanism protects 

our electronics from unwanted triggers 

• New signals are accepted only when  

the system in ready 

to process them 

•Which (average) DAQ rate can we achieve now? 

• How much we lose with the busy logic?  

•Reminder: with a clock trigger and 𝝉 = 1 ms the limit was 1 kHz

40

Deadtime and efficiency
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•Definitions  

• f: average rate of  

physics (input) 

• ν: average rate of  

DAQ (output) 

• τ: deadtime, needed to process an event,  

without being able to handle other triggers 

• probabilities: P[busy] = ν τ;   P[free] = 1 - ν τ 

•Therefore: 
•

41

Deadtime and efficiency

ν = fP[ free] ⇒ ν = f(1 − ντ) ⇒ ν =
f

1 + fτ
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•Due to stochastic fluctuations  

• DAQ rate always < physics rate 

• Efficiency always < 100%  

 

  

•So, in our specific example 

• Physics rate 1 kHz 

• Deadtime 1 ms
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Deadtime and efficiency
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•In order to obtain 𝝐~100% ( i.e.: ν~f )  → fτ ≪ 1 → τ << λ 

• E.g.: 𝝐~99% for f = 1 kHz  →  τ < 0.01 ms → 1/τ > 100 kHz 

• To cope with the input signal fluctuations,  

we have to over-design our DAQ system by a factor 100!  

•How can we mitigate this effect?
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Deadtime and efficiency
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•What if we were able to make the system more 

deterministic and less dependent on the arrival time of our 

signals? 

• Then we could ensure that events don’t arrive when the 

system is busy 

• This is called de-randomization 

•How it can be achieved?  

• by buffering the data (having a holding queue where it can 

wait to be processed)

47

De-randomization

Inter-arrival  
time distribution
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Data access  
time distribution
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•What if we were able to make the system more 

deterministic and less dependent on the arrival time of our 

signals? 

• Then we could ensure that events don’t arrive when the 
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•Efficiency vs traffic intensity (ρ = τ / λ) for different queue depths 

• ρ > 1:  the system is overloaded (τ > λ) 

• ρ ≪ 1:  the output is over-designed (τ << λ) 

• ρ ~ 1:  using a queue, high efficiency obtained even w/ moderate depth 

•Analytic calculation possible for very simple systems only 

• Otherwise MonteCarlo simulation is required 
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Queuing theory
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•Input fluctuations can be absorbed and 

smoothed by a queue  

• A FIFO can provide a ~steady and  

de-randomized output rate 

• The effect of the queue depends on its depth   

•Busy is now defined by the buffer occupancy 

• Processor pulls data from the buffer at fixed 

rate, separating the event receiving and data 

processing steps

TRIGGER
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•The FIFO decouples the low latency front-end 

from the data processing 

• Minimize the amount of “unnecessary” fast 

components 

•~100% efficiency w/ minimal deadtime 

achievable if 

• ADC can operate at rate ≫f 

• Data processing and storage 

operate at a rate ~ f  

•Could the delay be replaced with a “FIFO”? 

• Analog pipelines, heavily used in LHC DAQs

TRIGGER
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•Do we need de-randomization buffers also in 

collider setups? 

• Particle collisions are synchronous 

• But the time distribution of triggers is 

random: interesting events are 

unpredictable 

•De-randomization still needed 
•More complex busy logic to protect buffers 

and detectors 

• Eg: accept n events every m bunch crossings 

• Eg: prevent some dangerous trigger patterns 

TRIGGER
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Outline
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•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance

56
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•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition58

Adding more channels
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•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance
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Adding more channels
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•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance
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Adding more channels
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Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction 
data formatting 
data buffering

event assembly 
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event buffering

file storage 
file buffering

data digitization 
data buffering

•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance
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Adding more channels

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction 
data formatting 
data buffering

event assembly 
event buffering

event rejection 
event buffering

file storage 
file buffering

data digitization 
data buffering

•Buffering usually needed at every level 

• DAQ can be seen as a multi level buffering system 
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Backpressure

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)
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Backpressure

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
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ADC ADCADC ADCADCADC

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)
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Backpressure

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC
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Backpressure

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)

• Up to exert busy to the trigger 

system 

● Debugging: where is  
the source of back-pressure? 
‣ follow the buffers occupancy via the 

monitoring system 
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Backpressure

ADCADCADC

storage

Processing

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)

• Up to exert busy to the trigger 

system 

● Debugging: where is  
the source of back-pressure? 
‣ follow the buffers occupancy via the 

monitoring system 

Who’s guilty of  
back-pressure 
in this case?
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Building blocks

ADCADCADC

storage

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

FARM FARM…FARM

•Reading out data or building events out of many channels requires many components

• In the design of our hierarchical 

data-collection system, we better 

define “building blocks” 
‣ Readout crates 

‣ HLT racks 

‣ event building groups 

‣ daq slices
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Front End electronics
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Readout Boards (Counting Room)
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Building blocks

ADCADCADC

storage

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

FARM FARM…FARM

•Reading out data or building events out of many channels requires many components

• In the design of our hierarchical 

data-collection system, we better 

define “building blocks” 
‣ Readout crates 

‣ HLT racks 

‣ event building groups 

‣ daq slices
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Farm (@surface)
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•How to organize interconnections inside the building blocks and between building blocks? 

• How to connect data sources and data destinations? 

• Two main classes: bus or network

72

Readout Topology

data sources

data processors

bus

bus bus network
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•Devices connected via a shared bus 

• Bus → group of electrical lines 

•Sharing implies arbitration 

• Devices can be master or slave 

• Devices can be addresses (uniquely 

identified) on the bus 

•E.g.: SCSI, Parallel ATA, VME, PCI … 

• local, external, crate, long distance, ...
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Buses

Select Line

Data Lines

MASTERSLAVE

Device 
1

Device 
2

Device 
3

Device 
4
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• PCI express  

• VME 

• μTCA  

• ATCA

74

Bus examples (some)
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Bus facts

•Simple :-) 

• Fixed number of lines (bus-width) 

• Devices have to follow well defined interfaces 

‣ Mechanical, electrical, communication, … 

•Scalability issues :-( 
• Bus bandwidth is shared among all the devices 

• Maximum bus width is limited 

• Maximum number of devices depends on bus length 

• Maximum bus frequency is inversely proportional to the bus length 

• On the long term, other “effects” might limit the scalability of your system
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Bus facts

On the long term,  
2nd order effects might limit the scalability of your system
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•All devices are equal (peers) 

• They communicate directly with  

each other via messages 

‣ No arbitration 

‣ Bandwidth guaranteed 

• Not just copper: optical, wireless 

•Eg: Telephone, Ethernet, Infiniband, …

77

Networks
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•In switched networks, switches move 

messages between sources and 

destinations 

• Find the right path 

•How congestions (two messages with the 

same destination at the same time) are 

handled? 

• The key is .... buffering

78

Networks
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Networks

Cable management is still a thing. 
It can still go very wrong if you’re not careful…
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Outline

1. Introduction 

1.1. What is DAQ? 

1.2. Overall framework 

2. Basic DAQ concepts 

2.1. Digitization, Latency 

2.2. Deadtime, Busy, Backpressure 

2.3. De-randomization 

3.  Scaling up 

3.1. Readout and Event Building 

3.2. Buses vs Network 

4. DAQ Challenges at LHC
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Ks Identification Tracking  
p-Measurement

Particle ID

Calorimetry
Trigger Support

Muon ID
Trigger Support
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2835×2835 bunches 
in the LHC ring

1011 protons / bunch

≤30 pp collisions  
per bunch crossing 
(BC) 

N parton-parton 
collisions / pp collision 

Complex final-states 
in every parton-parton 
collision.

Ecms = 14 TeV 
L =10 34 /cm2 s 

BC clock = 40 MHz    

LHC engine and its products

Design  
parameters

•Interesting processes extremely rare,  

high Luminosity is essential 

• Close collisions in space and time 
‣ Large proton bunches (1.5x1011) 

‣ Fixed frequency: 40MHz (1/25ns) 

•Protons are composite particles 

• abundant low energy interactions 

•Few rare high-E events overwhelmed in 
abundant low-E environment



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition

•Huge 

• O(106-108) channels 

• ~1 MB event size for pp collisions 

‣ 50 MB for pb-pb collisions (Alice) 

• Need huge number of connections 

•Fast and slow detectors 

• Some detectors readout requires >25 ns and integrate  

more than one bunch crossing's worth of information 

‣ e.g. ATLAS LArg readout takes ~400 ns 

•Online, what is lost is lost forever 

• Need to monitor selection - need very good control over all conditions

82

LHC Detectors Challenges
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•ATLAS/CMS Example 
▶ 1 MB/event at 100 kHz for O(100ms) HLT 

latency 
• Network: 1 MB*100 kHz = 100 GB/s 
• HLT farm: 100 kHz*100 ms = O(104) CPU cores 

▶ Intermediate steps (level-2) to reduce 
resources, at cost of complexity  
(at ms scale) 

Prefer COTS hardware: PCs (linux based), Ethernet 
protocols, standard LAN, configurable devices

83

HLT/DAQ requirements

See S.Cittolin, DOI: 10.1098/rsta.2011.0464

100kHz

1 kHz

DA
Q

+H
LT

Re
ad

ou
t

• Robustness and redundancy 

• Scalability to adapt to Luminosity,  

detector evolving conditions 

• Flexibility (> 10-years lifetime) 

• Based on commercial products 

• Limited cost

https://doi.org/10.1098/rsta.2011.0464
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•Same physics program 

•Different magnetic field structure 

• ATLAS:  2 T solenoid + Toroids 

• CMS: strong 4 T solenoid 

•Different DAQ architecture 

• ATLAS: minimise data flow bandwidth  

with multiple levels and regional readout 

• CMS: large bandwidth, invest on commercial technologies  

for processing and communication 

•Same data rates 

• ~1 MB * 100 kHz = ~100 GB/s readout network

84

ATLAS & CMS design principles

ATLAS

CMS
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•Run-1 (as from TDR, 2002) 

• Myrinet + 1GBEthernet 

• 1-stage building: 1200 cores (2C) 

• HLT: ~13,000 cores  

• 18 TB memory @100kHz: 

~90ms/event
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CMS: 2-stage Event building

Myrinet (data concentrator)

1GB/s Ethernet (event builder)

CMS DAQ-1

2 EB networks 

Filter network
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Evolution from LHC Run-1 to Run-2
DAQ-2 Shifter Tutorial, 7 March 2017 H. Sakulin / CERN EP 23 

100 kHz 
L1 rate  

Event size up to 1MB 

100  
GB/s  

max. 1.2 GB/s to storage 

13000 core  
filter farm 

Event size up to 2MB 
(large margin) 

~ 3 GB/s to storage 

16000+ core  
filter farm 

200  
GB/s  

100 kHz 
L1 rate  

CMS DAQ 1 CMS DAQ 2 

10/40 Gb/s Ethernet 

56 Gb/s Infiniband 

Myrinet 

1 Gb/s Ethernet 

CMS DAQ-2
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•HLT selections based on regional 

readout and reconstruction 

• seeded by L1 trigger objects (RoI) 

•Total amount of RoI data is minimal: a 

few % of the Level-1 throughput  

• one order of magnitude smaller 

readout network 

• at the cost of a higher control traffic 

and reduced scalability
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ATLAS: Region of Interest (ROI) dataflow

—— electron 
—— muon

Calorimeter RoIMuon RoI
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•Overall network bandwidth: ~10 GB/s  

• x10 reduced by regional readout) 

•Complex data routing

88

ATLAS: SEEDED reconstruction HLT RUN 1
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• Increased rates  

• Merged L2/HLT 

• Increase Readout bandwidth  

• Increase HLT rate 

• Unified network  

89

NEW TDAQ architecture for Run-2 RUN 2
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•Single forward arm spectrometer → 

reduced event size 

• Average event size 60 kB 

• Average rate into farm 1 MHz 

• Average rate to tape ~12 kHz 
•Small event, at high rate 

• optimised transmission
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LHCb TDAQ Architecture
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Trigger Support
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•(Level-1) Trigger-less! 
• 

Data reduction before EB 

• custom readout FPGA-card (PCIe40)  

• Each sub detectors with its packing algorithm, 

 i.e. zero-suppression and clustering 

•Readout: ~10,000 GBT links (4.8 Gb/s, rad-hard) 

•DataFlow: decouple EB and HLT in 2 networks 

• scalable up to 400 x 100Gbps links 
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LHCb TDAQ upgrade

 Cavern   

 Surface 
data center

PCs/PCIe40

Phase 1 Upgrade
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•19 different detectors  

• with high-granularity ant timing information  

• Time Projection Chamber (TPC): 

very high occupancy, slow response  

•Large event size (> 40MB) 

• TPC producing 90% of data  

•Challenges for the TDAQ design: 

• detector readout: up to ~50 GB/s 

• low readout rate: max 8 kHz 

• storage:  1.2 TB/s (Pb-Pb)

92

ALICE
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ALICE TDAQ architecture

1.2μs 

6.5μs 

8.8μs

Hardware

Software

•Trigger 

• 3 hardware levels 

• 1 software 

•Detector readout (~20 GB/s) with point-to-point optical links 

• ~ 400 DDL to RORC PCI cards (6 Gbps)  

• data fragments directly into PC memory of LDCs, at 200 MB/s (via DMA) 

•Dataflow with local LDC and global GDC data concentrators (for Event Building) 

• HLT as any other sub-detector in DAQ
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•This was just an introduction the basic principle of data aquisition 

• More details on Trigger and FPGAs in the following lectures  

•The principle of a simple data acquisition system 

• Basic elements: trigger, derandomiser, FIFO, busy logic 

• Scaling to multi-channel, multi-layer systems 

• How data is transported 

‣ Bus versus network 

•A (very) brief overview of LHC experiment DAQ systems 

• Very challenging, but not the only ones around
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Summary


