
Computing

Stewart Martin-Haugh (RAL)

RAL Graduate Lectures
13 May 2020

Stewart Martin-Haugh (STFC RAL) Computing 1 / 67

Introduction

I Computers offer two principal advantages over humans
I Correctness
I Speed

Stewart Martin-Haugh (STFC RAL) Computing 2 / 67

Programming languages
I Python and C++ most popular in particle physics
I Python increasingly popular in the outside world
I C++ isn’t going anywhere, but doesn’t seme to be growing much

Source: Stack Overflow

Stewart Martin-Haugh (STFC RAL) Computing 3 / 67

https://insights.stackoverflow.com/trends

Python
I Python is particularly good for scripts

I Easy to read and write
I Slower than C++ (interpreted vs. compiled) but can call C++,

Fortran if speed is necessary
I Most experiment frameworks use Python to glue bits of C++

together (Athena, CMSSW)
I Increasing interest in common and open-source tools - see e.g.

PyHEP workshops

Stewart Martin-Haugh (STFC RAL) Computing 4 / 67

https://indico.cern.ch/event/833895/timetable/

C++

I Big, complicated language - multiple ways to do things
I C (arrays, pointers, functions)
I Classic C++ (new, delete, classes)
I Templates (template <class T>)
I Modern C++ (std::unique_ptr, for (auto x: y))

I In large codebases (e.g. experiment offline software) all of these will
co-exist (happily/unhappily)

I Evolving language - C++11 standard brought modern C++, new
standards every 3 years

I C and C++ are probably the best-supported ways to write fast code

Stewart Martin-Haugh (STFC RAL) Computing 5 / 67

Other languages

My views:
I Julia: aims to be like a fast Python
I Rust: aims to be like a correct-by-default C++

A rustacean

Stewart Martin-Haugh (STFC RAL) Computing 6 / 67

Correctness

I How do you verify a calculation that you can’t do any other way?
I Find a version of your calculation where you know what the answer

should be
I Change something that should not change the answer and check the

result

Stewart Martin-Haugh (STFC RAL) Computing 7 / 67

Software engineering1

I Everything around the actual writing of code
I Debugging, testing, packaging, operating environments
I Software engineering is an entire discipline, but just one of the skills

you need in HEP

1Term coined by Margaret Hamilton, lead programmer for the Apollo Mission
guidance computer

Stewart Martin-Haugh (STFC RAL) Computing 8 / 67

Debugging thoughts
Brian Kernighan (C, Unix etc):
I The most effective debugging tool is still careful thought, coupled

with judiciously placed print statements.
I Everyone knows that debugging is twice as hard as writing a

program in the first place. So if you’re as clever as you can be when
you write it, how will you ever debug it?

Rubber ducks and teddy bears:
I Explain your problem to anyone at all: doesn’t have to be an expert

programmer
I Doesn’t have to be a living being: rubber ducks and teddy bears
I Draft an email to an expert explaining what you think is happening

Stewart Martin-Haugh (STFC RAL) Computing 9 / 67

Debugging thoughts

1. Reproduce the problem and generate exact setup instructions
(environment, command, extra software on top)

2. Find a fix
3. Establish that the fix has no obvious side effects (e.g. an unrelated

test still gives the same result)

#This fails with an error - try it out if you're on
ATLAS

asetup master, r2020 -05-07T2140, Athena
test_trig_data_v1Dev_deps_build.py

Stewart Martin-Haugh (STFC RAL) Computing 10 / 67

Static analysis

I There is no way to tell, in general, what a program will do beyond
running it (Turing completeness)

I But you can tell that some things will crash
I Automated tools to help

Python
I flake8 (combination of pep8

style guide and static analysis)
I vulture

C++
I Compiler warnings (enable as

many warnings as possible,
don’t consider your code
complete until they are all
fixed)

I cppcheck (fast!)
I clang-analyzer
I Coverity (slow...)

I Add these to your testing (more on testing later)

Stewart Martin-Haugh (STFC RAL) Computing 11 / 67

Dynamic analysis

Add extra information to your compiled binary that makes it crash or
warn when things have gone wrong
I Extra print statements
I Debug symbols: add line numbers etc to your crashes g++ -g

I GDB and friends: learn to use a debugger, read stack traces
I Valgrind: run in a virtual environment that flags memory errors
I Sanitizer tools (part of Clang project): tell you if you’re writing

outside allowed memory, using uninitialised data

Stewart Martin-Haugh (STFC RAL) Computing 12 / 67

Memory errors (C++)

I Most common: reading/writing beyond an array

vector<float> vec;
vec.push_back(1);
std::cout << vec[2] << std::endl;

I This will read random memory: could crash, could print 0, could
print 1.1755–e38

I Cause irreproducible results
I Can catch by compiling with AddressSanitizer or running under

Valgrind
I vec.at(i) will throw an exception if you go past the end of the

vector, but it’s a bit slower (unlikely to matter for you)

Stewart Martin-Haugh (STFC RAL) Computing 13 / 67

Floating point errors

I 1.0/0.0, 0.0/0.0, sqrt(-1): inf, NaN, NaN - all of these are
floating point exceptions (FPEs)

I Since any mathematical operation involving NaN gives NaN, it can
pollute all your results and should be fixed

I Floats are most precise close to 0 - avoid using very small and very
large numbers

I Strongly recommend reading Floating point demystified for a more
thorough understanding

Stewart Martin-Haugh (STFC RAL) Computing 14 / 67

https://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html

Testing

Types of tests
I System/integration tests: test that different components work

together, usually at large-scale (e.g. run full reconstruction over a
large dataset)
I Easiest to write: mirror what the code is eventually meant to o

I Regression tests: check that a fixed bug does not reappear
I Harder to write: need to keep track of test cases

I Unit tests: check functionality at ≈ function level - should be quick
to run
I Hardest to write: think about what each function does, may need

extra code, fake input data
I Add static analysis to your tests

Writing any tests at all is good, and you get better at writing them with
practice

Stewart Martin-Haugh (STFC RAL) Computing 15 / 67

Unit test example
def squ(x):

return x**2 + 1

def test_squ():
assert squ(42)==1764

test_squ()

#Output:
Traceback (most recent call last):

File "square.py", line 7, in <module>
test_squ()

File "square.py", line 5, in test_squ
assert(squ(42)==1764)

AssertionError

I This kind of strategy is useful for checking that a change that
shouldn’t change the output, doesn’t change the output

I Python assert is very useful in general: litter your code with it
I Consider unit testing libraries (e.g. GoogleTest, Python unittest)

Stewart Martin-Haugh (STFC RAL) Computing 16 / 67

https://docs.python.org/3/library/unittest.html

Random and comprehensive testing
I Testing with truly random inputs hasn’t been used much in particle

physics
I But we do run code over large MC and data samples with built-in

randomness
I So we are testing with a random distribution - nature/theory +

systematic uncertainties + detector response
I Fuzz testing is truly random testing, very important for computer

security

Stewart Martin-Haugh (STFC RAL) Computing 17 / 67

Continuous integration
I Run as many tests as you can for each change you make (i.e. a

merge or pull request)
I Catch problems before they’re part of the main codebase
I GitLab CI, Jenkins, Travis CI

#example gitlab CI for LaTeX
stages:

- build

build:
image: thomasweise/docker-texlive-full
stage: build
script:
- apt update -y
- apt install -y biber
- make
artifacts:

paths:
- "*.pdf"

expire_in: 1 week

Stewart Martin-Haugh (STFC RAL) Computing 18 / 67

Containers
Useful for many reasons: debugging, versioning, sharing code
I Run a lightweight virtual operating system on top of your real OS
I Similar to a virtual machine
I Easily run Linux programs on Mac, Windows
I A description of an environment that someone else can run
I Can run on the Grid
I Can run Unix v1 (1972)

Stewart Martin-Haugh (STFC RAL) Computing 19 / 67

https://nickjanetakis.com/blog/run-the-first-edition-of-unix-1972-with-docker

Conclusions about correctness

I Have only had time to cover some basics
I Questions?

Now on to speed!

Stewart Martin-Haugh (STFC RAL) Computing 20 / 67

Fast computing

High throughput computing
I Can parallelise and buffer data for later processing
I LHC, SKA - this talk
I Maximise throughput = events/second

Low latency computing
I Pointless or impossible to buffer
I High frequency trading, autonomous vehicles

High performance computing
I Problems that don’t parallelise easily - supercomputer
I Climate modelling
I Fast connections between processors, lots of RAM

Stewart Martin-Haugh (STFC RAL) Computing 21 / 67

CPUs 101

I Moore’s Law no
longer holding
for CPU clock
speed (since ≈
2006)

I Memory has
fallen behind
CPU - big
bottleneck
frequently
memory access

I More processing
power available
through
parallelism

Source: Herb Sutter
Stewart Martin-Haugh (STFC RAL) Computing 22 / 67

http://www.gotw.ca/publications/concurrency-ddj.htm

CPUs 101

Fast memory is
expensive
I Fastest memory

kept in L1 cache,
slower in L2 etc

I Slow memory in
RAM

I Slowest of all is
hard disk

I Cache miss =
retrieving data
from a different
cache

Source: What Every Programmer Should Know About
Memory

Stewart Martin-Haugh (STFC RAL) Computing 23 / 67

https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf

Pipelining

I Pipelining allows processors to execute multiple instructions per
clock cycle

Five stage Instruction pipeline

I Only works for linear code
I Branching (e.g. if and else) is a problem
I Can’t load anything past the branch point

Stewart Martin-Haugh (STFC RAL) Computing 24 / 67

https://en.wikipedia.org/wiki/Instruction_pipelining

Branch prediction
I Module within CPU decides which branch to take (details here)
I Allows CPU to pipeline code with branches
I Significant penalty if you take an unexpected branch - CPU has to

load new code into pipeline

I Solution: remove branches if possible
I Unbalance your branches - 50/50 if else is harder to predict than

e.g. 90/10 if else
I Sort data (see most popular ever Stack Overflow question)

Stewart Martin-Haugh (STFC RAL) Computing 25 / 67

https://danluu.com/branch-prediction/
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

Parallelism/concurrency

I An entirely parallelisable calculation is referred to as embarrassingly
parallel
I Event generation: every collision has no dependency on the previous
I Simulate each collision on a separate CPU: scale to number of CPUs

available
I Most calculations have a parallel and serial component, which limits

the speedup

Stewart Martin-Haugh (STFC RAL) Computing 26 / 67

Parallel and serial components
Silly example
I Making a car requires 1000 identical parts: each part takes 1 minute

to make
I The 1000 identical parts must be assembled in a final step: this

takes 60 minutes
Serial path
I 1000 parts assembled by a single worker + final assembly = 1000 +

60 minutes = 1060 minutes
Parallel path
I 1000 parts assembled by different workers simultaneously + car

assembly = 1 + 60 minutes = 61 minutes
Maximum speedup
I 1060/61 = 17.4

No further gains without improving the final assembly (serial part)
I Amdahl’s law turns this kind of reasoning into a formal statement

Stewart Martin-Haugh (STFC RAL) Computing 27 / 67

Parallelism

Flynn’s taxonomy (1966)
I SISD (Single instruction, single data) single-threaded operation
I SIMD (Single instruction, multiple data) vector operations
I MISD (Multiple instruction, single data) fairly rare in practice
I MIMD (Multiple instruction, multiple data) multi-threaded operation

Stewart Martin-Haugh (STFC RAL) Computing 28 / 67

Vectorisation/SIMD

I Modern CPUs can execute the same instructions on multiple data
simultaneously

1 std::array<int, 100> int_array;
2 for (unsigned int i = 0; i < 100; i++) {
3 int_array[i] = i*4;
4 }

I Different architectures depending on CPU generation: MMX, SSE,
AVX
I Code generated for one instruction set will not work with another

Stewart Martin-Haugh (STFC RAL) Computing 29 / 67

Auto-vectorisation
I Compiler can generate appropriate vector instructions for loops etc
I Will not always apply it if not beneficial - see backup for an example

where GCC and Clang disagree

1 #include <array>
2 #include <iostream>
3
4 int main() {
5 std::array<int, 100> int_array;
6 for (unsigned int i = 0; i < 100; i++) {
7 int_array[i] = i*4;
8 }
9 std::cout << int_array[10] << std::endl;

10 return 0;
11 }

clang++ -msse4.2 -std=c++11 vec.cpp -O2 -Rpass=loop-vectorize
vec.cpp:6:2: remark: vectorized loop (vectorization width: 4,

interleaved count: 1) [-Rpass=loop-vectorize]
for (unsigned int i = 0; i < 100; i++) {
^

#similarly: g++ -std=c++11 vec.cpp -O3 -fopt-info-vec

Stewart Martin-Haugh (STFC RAL) Computing 30 / 67

Vectorisation by hand
I Autovectorisation is fragile: re-order your code and it can disappear
I Can write using vector intrinsics: functions that act on arrays of

data and operate accordingly
I Resulting code will not compile on different CPU type (e.g. ARM,

older Intel/AMD)
I More complicated to write

Stewart Martin-Haugh (STFC RAL) Computing 31 / 67

Vectorisation by someone else’s hand

I Easiest solution: use a library written by an expert
I E.g. for cos(), exp(), atan2()

I CERN VDT
I Intel and AMD mathematical function libraries (recipe in backup)

I For matrix algebra
I Eigen

Stewart Martin-Haugh (STFC RAL) Computing 32 / 67

https://github.com/dpiparo/vdt
http://eigen.tuxfamily.org/index.php?title=Main_Page

Multiple instructions, multiple data (MIMD)
MIMD: multi-threading
I A thread is a sub-program controlled by your main program
I Operating system decides when and on which CPU they run
I Thread order is non-deterministic: can lead to difficult bugs

I Race conditions, deadlocks, irreproducible output
I Usually one thread per CPU
I Swapping between threads on one CPU: “hyper-threading”

from Wikipedia

Stewart Martin-Haugh (STFC RAL) Computing 33 / 67

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Threading example with OpenMP
#include <iostream>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(4)
{

int thread = omp_get_thread_num();
int total = omp_get_num_threads();
std::cout << "Greetings from thread " << thread << "

 out of " << total << std::endl;
}
std::cout << "parallel for ends." << std::endl;
return 0;

}
g++ -fopenmp test_omp.cpp && ./a.out
Greetings from thread 1 out of 4
Greetings from thread 0 out of 4
Greetings from thread 3 out of 4
Greetings from thread 2 out of 4

I Must program in a way that avoids dependence on thread order or
data local to each thread

Stewart Martin-Haugh (STFC RAL) Computing 34 / 67

Threading libraries

I Intel Threading Building Blocks: used by ATLAS, CMS, LHCb for
multi-threaded data processing

I OpenMP is best for simpler situations with limited relationships
between threads

I Other frameworks exist: e.g. HPX is gaining some momentum
Many more details on threading available in Graeme Stewart’s
concurrency lectures (with worked examples)

Stewart Martin-Haugh (STFC RAL) Computing 35 / 67

https://github.com/STEllAR-GROUP/hpx
https://github.com/graeme-a-stewart/cpp-concurrency/
https://github.com/graeme-a-stewart/cpp-concurrency/

Brief digression on GPU programming
I Initially designed for graphics calculations: matrix and vector

operations
I Tailored towards embarrassingly parallel problems
I Increasingly used for scientific applications, machine learning
I Several competing options for programming

I CUDA for NVidia
I HIP for AMD
I OpenCL, SYCL: multi-platform

I HEP software moving towards these, but difficult/labour-intensive to
port

I Increasingly popular for supercomputers etc: dragging HEP that way

Stewart Martin-Haugh (STFC RAL) Computing 36 / 67

Parallelism conclusions

I Vectorisation and multi-threading are harder to work with than
single-threaded programming
I But necessary if you want to get the highest possible performance

I Even if you don’t need the best performance, you can still apply
some of this through libraries

Next topic: measuring performance

Stewart Martin-Haugh (STFC RAL) Computing 37 / 67

Measuring runtimes

I Basic solution: time command
I user = time spent in your code
I sys = time spent in (Linux) kernel code
I real = sum of user + sys = Walltime

>time factor 1234567890987654321123456789333333333
1234567890987654321123456789333333333: 3 3 3 23 43

27062723775121 1708375824282413291

real 0m0.363s
user 0m0.321s
sys 0m0.000s

I You care about real, but you can only affect user
I If you’re worried about system calls, you can use strace to see which

ones are used (see e.g. Julia Evans strace zine)

Stewart Martin-Haugh (STFC RAL) Computing 38 / 67

http://jvns.ca/strace-zine-v2.pdf

Walltime

I Walltime is the most important
number for profiling, but also
the most difficult to measure
accurately
I Varies with CPU
I Some variation from

operating system
I Penalty for running in a

virtual machine

Stewart Martin-Haugh (STFC RAL) Computing 39 / 67

Measuring runtimes
I Next level in complication: debugger
I Start your program, then randomly interrupt it a few times and see

which function it’s in

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in SiSpacePointsSeedMaker_ATLxk::

production3Sp() ()
from libSiSpacePointsSeedTool_xk.so

(gdb) bt
#0 0x00007f8d81f09b55 in production3Sp() ()

from libSiSpacePointsSeedTool_xk.so
#1 0x00007f8d81f0baaa in production3Sp() ()

from libSiSpacePointsSeedTool_xk.so
#2 0x00007f8d81f0bc0b in find3Sp() ()

from libSiSpacePointsSeedTool_xk.so

I This is the callstack
I If your program spends 90% of its time in function X, you have a

90% chance of catching it

Stewart Martin-Haugh (STFC RAL) Computing 40 / 67

Sampling profilers

I Congratulations, you’ve made a basic sampling profiler!
I Sample = interrupt, look at the call stack

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
(gdb) bt
#0 0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
#1 0x00007f8d81f0baaa in frameworkCode() ()

from frameworkCode.so
#2 0x00007f8d81f0bc0b in main() ()

from program.so

Stewart Martin-Haugh (STFC RAL) Computing 41 / 67

Cost

I costlyFunction() (top of the stack trace): where program was when
halted
I “Self cost”

I frameworkCall(), main(): call the function doing the work
I “Total cost”

I Self cost ≤ total cost
I Focus optimisation efforts on functions with highest self-cost

#0 0x00007f8d81f09b55 in costlyFunction() ()
from costlyNumerics.so

#1 0x00007f8d81f0baaa in frameworkCall() ()
from frameworkCode.so

#2 0x00007f8d81f0bc0b in main() ()
from program.so

I Some would argue this is the one true profiler

Stewart Martin-Haugh (STFC RAL) Computing 42 / 67

https://stackoverflow.com/questions/375913/how-can-i-profile-c-code-running-in-linux/378024#378024

Sampling profilers
I Automate the call stack sampling procedure, generate a call graph

(can be nicely visualised in KCacheGrind)
I gperftools, Intel VTune, igprof
I Can also assign cost to lines of code (but take with a pinch of salt)

Stewart Martin-Haugh (STFC RAL) Computing 43 / 67

VTune
I Intel VTune is an excellent tool
I Free to download, if you register with Intel

Stewart Martin-Haugh (STFC RAL) Computing 44 / 67

https://software.intel.com/en-us/intel-vtune-amplifier-xe/

Instrumentation

I High-level languages (e.g. C++) have inbuilt timing facilities:

us ing namespace std ;
us ing namespace std : : chrono ;
auto start_t ime = high_reso lut ion_c lock : : now() ;
doSomething () ;
auto end_time = high_reso lut ion_c lock : : now() ;
cout << ”Time : ␣” << durat ion_cast<microseconds >(end_time −

start_t ime) . count () << endl ;

I Known as “instrumenting” your code
I Useful, but has some cost - don’t e.g. try to measure within tight

loops
I Google Benchmark builds this into a useful framework to benchmark

functions

Stewart Martin-Haugh (STFC RAL) Computing 45 / 67

https://github.com/google/benchmark

Emulation

I Callgrind tool (part of Valgrind2)
I Emulates a basic modern CPU, with level 1, level 2 caches, branch

prediction (somewhat configurable)
I Runs slowly
I Information about cache misses and branch misprediction
I Produces output suitable for KCacheGrind

2Very useful suite of tools for debugging and profiling
Stewart Martin-Haugh (STFC RAL) Computing 46 / 67

http://valgrind.org/
https://danluu.com/branch-prediction/
https://danluu.com/branch-prediction/

Instrumentation
I perf is now the gold standard - sampling and instrumenting
I Part of Linux kernel (best results with new kernels)
I Monitor performance monitoring counters (PMCs)
I VTune also has access to these

I Some features require root access

perf stat -d program
10 152 172 182 cycles:u #

3,451 GHz (49,86%)
14 584 154 073 instructions:u #

1,44 insn per cycle (62,43%)
2 318 605 154 branches:u #

788,130 M/sec (74,93%)
44 768 463 branch-misses:u #

1,93% of all branches (75,00%)
4 116 170 377 L1-dcache-loads:u #

1399,150 M/sec (74,18%)
167 821 302 L1-dcache-load-misses:u #

4,08% of all L1-dcache hits (25,06%)
45 252 042 LLC-loads:u #

15,382 M/sec (24,89%)
8 794 669 LLC-load-misses:u #

19,43%
of all LL-cache hits (37,33%)

Stewart Martin-Haugh (STFC RAL) Computing 47 / 67

Profiling thoughts

I It’s a cliche, but the biggest improvements usually come from
changing algorithm, not minor changes to code

I Many profilers available
I Measure and benchmark

Stewart Martin-Haugh (STFC RAL) Computing 48 / 67

Compiler optimisation

I Standard compilers (GCC, clang) can do a lot of optimising for you!
I -O0 = no optimisations applied
I -O1, -O2 = basic, safe optimisations applied
I -03 = expensive optimisations (take a long time, may actually make

code slower) applied
I O2 is a good optimisation reference level - try also O3
I Measure at O2/O3 before optimising by hand
I Fine-tuned optimisation options available - check GCC/clang

documentation for details

Stewart Martin-Haugh (STFC RAL) Computing 49 / 67

Optimisation example
I GCC and Clang compilers can reduce square example3 down to

something sensible

int square(int n)
{

int k = 0;
while (true)
{

if(k == n*n)
{

return k;
}
k++;

}
}

→
int square2(int n)
{

return n*n;
}

I Optimising compilers are amazing - you only need to care when
automatic optimisation fails

3NB: Don’t write a square function, just square numbers in the code
Stewart Martin-Haugh (STFC RAL) Computing 50 / 67

https://godbolt.org/g/fpbDGs

CPU optimisation

I Once you’ve identified which part of your code takes the most time,
you can start optimising

I Strategies are somewhat language-dependent, but some general
points always true

I Compiled languages (C++, Fortran) faster than interpreted
(Python, Ruby)

I Standard libraries (FFTW, BLAS, Eigen) likely faster than your own
code - don’t reinvent the wheel!

Stewart Martin-Haugh (STFC RAL) Computing 51 / 67

Floating-point operations

I Addition is faster than multiplication (usually compiler will do this
for you if needed)

I Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

I Rearrange calculations to minimise number of operations
I Compiler won’t necessarily do this for you (floating point rules)

y = d*x*x*x + c*x*x + b*x + a; //Bad
y = x*(x*(x*d+c)+b) + a; //Good

I Some of these rearrangements lose clarity
I Only do this if it’s genuinely a bottleneck

Stewart Martin-Haugh (STFC RAL) Computing 52 / 67

Mathematical functions

I Square root is slow
I Trigonometric functions, exp, log, are slow

I Consider using an optimised library (see e.g. VDT)
I Trigonometric identities can help you

I For linear algebra, definitely use a library (e.g. Eigen)

Stewart Martin-Haugh (STFC RAL) Computing 53 / 67

http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052027/pdf
http://eigen.tuxfamily.org/

Loops

I Don’t recalculate within loops: move code outside
I Consider storing frequently calculated values

for (i = 0; i < 50; i++) {
for (j = 0; j < 50; j++) {

x = sin(5*i) + cos(6*j);
//Can move sin() into earlier loop

}
}

Stewart Martin-Haugh (STFC RAL) Computing 54 / 67

Algorithmic complexity

I If possible, stick to standard algorithms (e.g. C++ std::sort) instead
of writing your own

I If the algorithm is a hotspot, consider trying out different algorithms
(note, flashing lights)

Stewart Martin-Haugh (STFC RAL) Computing 55 / 67

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg

Data structures

I Worth thinking about which data format fits your problem
I In C++, std::vector is probably a good fit (but make sure you

reserve enough size in advance!)
I std::map and std::unordered_map are also useful

Stewart Martin-Haugh (STFC RAL) Computing 56 / 67

Points to remember

I Profiling and reasoning about code cannot tell you if you’re using
the wrong algorithm for your problem

I Writing your own implementation of something is an excellent way
to learn, even if you never use it

I Correctness must come before optimisation

Stewart Martin-Haugh (STFC RAL) Computing 57 / 67

Memory 101
Programs have access to two pools of memory: stack and heap
I Stack:

I Small amount of memory associated with program
I Fast to access - can be e.g. in CPU L1 cache
I E.g. variables in a function

int f(int x) {
int i = 55;
return x + i;

}

I Heap:
I Slower to access than stack
I Can be dynamically allocated
I If you don’t free up memory, this is where it leaks
I All the RAM available on the machine (if it runs out, it will use hard

drive - v slow!)

int g(int x) {
int* i = new int(55);//On heap
return x + *i;
//Memory for i not given back to OS - leak

}
Stewart Martin-Haugh (STFC RAL) Computing 58 / 67

Memory profiling

I Using too much memory is bad for two reasons
I Eventually you run out (e.g. memory leak)
I Allocating memory has a significant CPU cost - higher if your data

doesn’t fit in e.g. L1 cache
I A single large allocation is cheaper than several small allocations

I Better to access memory in order - data-locality
I Appropriate data structures help with this

Stewart Martin-Haugh (STFC RAL) Computing 59 / 67

Different allocators

I Your program will not just receive the memory it asks for when it
asks for it

I Allocator decides how much to request at a time and how much
should be contiguous

I glibc used by default
I Others available, particularly jemalloc (Facebook) and tcmalloc

(Google)
I No need to recompile, just preload
I May work better for your memory access pattern than glibc - free

speedup!

LD_PRELOAD=/usr/lib/libtcmalloc.so.4 ./my_program

Stewart Martin-Haugh (STFC RAL) Computing 60 / 67

Finding big allocations

I Scenario: your program is running out of memory
I How to track down large (e.g. 1 GB) allocations?
I tcmalloc provides a printout when this happens

tcmalloc: large alloc 2720276480 bytes == 0x73eda000 @
tcmalloc: large alloc 2720276480 bytes == 0x2a96f0000 @
tcmalloc: large alloc 2720276480 bytes == 0x34b932000 @

I Add a breakpoint at (anonymous namespace)::ReportLargeAlloc(
unsigned long, void*)

Stewart Martin-Haugh (STFC RAL) Computing 61 / 67

Heap profilers
I jemalloc and tcmalloc both come with low-overhead profilers to

analyse which functions allocate most memory
I Output can be interpreted much as with a call-graph

Stewart Martin-Haugh (STFC RAL) Computing 62 / 67

Memory profiling thoughts

I Memory profiling is more difficult than CPU profiling - tools less
advanced/convenient
I But improving all the time

I Can make a big difference if you’re using a lot of memory

Stewart Martin-Haugh (STFC RAL) Computing 63 / 67

Profiling and optimisation conclusions

I A small amount of profiling/optimisation knowledge can
dramatically improve your application performance
I Profiling is more important than optimisation

I Advanced techniques useful once you’ve done the easy bits
I More detail and worked examples in workshop

Stewart Martin-Haugh (STFC RAL) Computing 64 / 67

https://github.com/StewMH/OptimisationWorkshop

Conclusions

I A lot to cover in a single (long) lecture
I Continuing developments, particularly in concurrency and memory

safe programming
I Good debugging and profiling skills can help you in a lot of areas

throughout your PhD
I Particularly for C++, books (e.g. by Herb Sutter, Scott Meyers)

and videos (e.g. from CppCon)

Stewart Martin-Haugh (STFC RAL) Computing 65 / 67

https://www.youtube.com/channel/UCMlGfpWw-RUdWX_JbLCukXg

Backup: Meltdown and Spectre

I Security vulnerabilities in branch predictors: discovered January 2018
I Allow an attacker to read information from a non-executed branch
I More details here, here and here
I Fixes will slow down certain types of program

Stewart Martin-Haugh (STFC RAL) Computing 66 / 67

https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know
https://www.youtube.com/watch?v=IPhvL3A-e6E
https://www.youtube.com/watch?v=_f7O3IfIR2k

Backup: vec2.cpp
1 //Clang 6.0 thinks it's not worth it to vectorise, GCC 7.5

thinks it is
2 //g++ -msse4.2 -std=c++11 vec2.cpp -O3 -fopt-info-vec
3 //clang++ -msse4.2 -std=c++11 vec2.cpp -O2 -Rpass-missed=loop-

vectorize
4 #include <array>
5 #include <iostream>
6
7 struct particle {
8 float x; float y; float z; float t;
9 };

10
11 int main() {
12
13 std::array<particle, 100> part_array;
14 for (unsigned int i = 0; i < 100; i++) {
15 particle part;
16 part.x = i; part.y = i*2; part.z = i*3; part.t =

i*4;
17 part_array[i] = part;
18 }
19 std::cout << part_array[10].x << std::endl;
20 }

clang++ -msse4.2 -std=c++11 vec2.cpp -O2 -Rpass-missed=loop-
vectorize

vec2.cpp:14:2: remark: the cost-model indicates that
vectorization is not beneficial [-Rpass-missed=loop-
vectorize]

for (unsigned int i = 0; i < 100; i++) {
^

vec2.cpp:14:2: remark: the cost-model indicates that
interleaving is not beneficial [-Rpass-missed=loop-
vectorize]

Stewart Martin-Haugh (STFC RAL) Computing 67 / 67

