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Introduction

I Computers offer two principal advantages over humans
I Correctness
I Speed
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Programming languages
I Python and C++ most popular in particle physics
I Python increasingly popular in the outside world
I C++ isn’t going anywhere, but doesn’t seme to be growing much

Source: Stack Overflow
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https://insights.stackoverflow.com/trends


Python
I Python is particularly good for scripts

I Easy to read and write
I Slower than C++ (interpreted vs. compiled) but can call C++,

Fortran if speed is necessary
I Most experiment frameworks use Python to glue bits of C++

together (Athena, CMSSW)
I Increasing interest in common and open-source tools - see e.g.

PyHEP workshops
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https://indico.cern.ch/event/833895/timetable/


C++

I Big, complicated language - multiple ways to do things
I C (arrays, pointers, functions)
I Classic C++ (new, delete, classes)
I Templates (template <class T>)
I Modern C++ (std::unique_ptr, for (auto x: y))

I In large codebases (e.g. experiment offline software) all of these will
co-exist (happily/unhappily)

I Evolving language - C++11 standard brought modern C++, new
standards every 3 years

I C and C++ are probably the best-supported ways to write fast code
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Other languages

My views:
I Julia: aims to be like a fast Python
I Rust: aims to be like a correct-by-default C++

A rustacean
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Correctness

I How do you verify a calculation that you can’t do any other way?
I Find a version of your calculation where you know what the answer

should be
I Change something that should not change the answer and check the

result
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Software engineering1

I Everything around the actual writing of code
I Debugging, testing, packaging, operating environments
I Software engineering is an entire discipline, but just one of the skills

you need in HEP

1Term coined by Margaret Hamilton, lead programmer for the Apollo Mission
guidance computer
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Debugging thoughts
Brian Kernighan (C, Unix etc):
I The most effective debugging tool is still careful thought, coupled

with judiciously placed print statements.
I Everyone knows that debugging is twice as hard as writing a

program in the first place. So if you’re as clever as you can be when
you write it, how will you ever debug it?

Rubber ducks and teddy bears:
I Explain your problem to anyone at all: doesn’t have to be an expert

programmer
I Doesn’t have to be a living being: rubber ducks and teddy bears
I Draft an email to an expert explaining what you think is happening
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Debugging thoughts

1. Reproduce the problem and generate exact setup instructions
(environment, command, extra software on top)

2. Find a fix
3. Establish that the fix has no obvious side effects (e.g. an unrelated

test still gives the same result)

#This fails with an error - try it out if you're on
ATLAS

asetup master, r2020 -05-07T2140, Athena
test_trig_data_v1Dev_deps_build.py
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Static analysis

I There is no way to tell, in general, what a program will do beyond
running it (Turing completeness)

I But you can tell that some things will crash
I Automated tools to help

Python
I flake8 (combination of pep8

style guide and static analysis)
I vulture

C++
I Compiler warnings (enable as

many warnings as possible,
don’t consider your code
complete until they are all
fixed)

I cppcheck (fast!)
I clang-analyzer
I Coverity (slow...)

I Add these to your testing (more on testing later)
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Dynamic analysis

Add extra information to your compiled binary that makes it crash or
warn when things have gone wrong
I Extra print statements
I Debug symbols: add line numbers etc to your crashes g++ -g

I GDB and friends: learn to use a debugger, read stack traces
I Valgrind: run in a virtual environment that flags memory errors
I Sanitizer tools (part of Clang project): tell you if you’re writing

outside allowed memory, using uninitialised data
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Memory errors (C++)

I Most common: reading/writing beyond an array

vector<float> vec;
vec.push_back(1);
std::cout << vec[2] << std::endl;

I This will read random memory: could crash, could print 0, could
print 1.1755–e38

I Cause irreproducible results
I Can catch by compiling with AddressSanitizer or running under

Valgrind
I vec.at(i) will throw an exception if you go past the end of the

vector, but it’s a bit slower (unlikely to matter for you)
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Floating point errors

I 1.0/0.0, 0.0/0.0, sqrt(-1): inf, NaN, NaN - all of these are
floating point exceptions (FPEs)

I Since any mathematical operation involving NaN gives NaN, it can
pollute all your results and should be fixed

I Floats are most precise close to 0 - avoid using very small and very
large numbers

I Strongly recommend reading Floating point demystified for a more
thorough understanding
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https://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html


Testing

Types of tests
I System/integration tests: test that different components work

together, usually at large-scale (e.g. run full reconstruction over a
large dataset)
I Easiest to write: mirror what the code is eventually meant to o

I Regression tests: check that a fixed bug does not reappear
I Harder to write: need to keep track of test cases

I Unit tests: check functionality at ≈ function level - should be quick
to run
I Hardest to write: think about what each function does, may need

extra code, fake input data
I Add static analysis to your tests

Writing any tests at all is good, and you get better at writing them with
practice
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Unit test example
def squ(x):

return x**2 + 1

def test_squ():
assert squ(42)==1764

test_squ()

#Output:
Traceback (most recent call last):

File "square.py", line 7, in <module>
test_squ()

File "square.py", line 5, in test_squ
assert(squ(42)==1764)

AssertionError

I This kind of strategy is useful for checking that a change that
shouldn’t change the output, doesn’t change the output

I Python assert is very useful in general: litter your code with it
I Consider unit testing libraries (e.g. GoogleTest, Python unittest)
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https://docs.python.org/3/library/unittest.html


Random and comprehensive testing
I Testing with truly random inputs hasn’t been used much in particle

physics
I But we do run code over large MC and data samples with built-in

randomness
I So we are testing with a random distribution - nature/theory +

systematic uncertainties + detector response
I Fuzz testing is truly random testing, very important for computer

security
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Continuous integration
I Run as many tests as you can for each change you make (i.e. a

merge or pull request)
I Catch problems before they’re part of the main codebase
I GitLab CI, Jenkins, Travis CI

#example gitlab CI for LaTeX
stages:

- build

build:
image: thomasweise/docker-texlive-full
stage: build
script:
- apt update -y
- apt install -y biber
- make
artifacts:

paths:
- "*.pdf"

expire_in: 1 week

Stewart Martin-Haugh (STFC RAL) Computing 18 / 67



Containers
Useful for many reasons: debugging, versioning, sharing code
I Run a lightweight virtual operating system on top of your real OS
I Similar to a virtual machine
I Easily run Linux programs on Mac, Windows
I A description of an environment that someone else can run
I Can run on the Grid
I Can run Unix v1 (1972)
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https://nickjanetakis.com/blog/run-the-first-edition-of-unix-1972-with-docker


Conclusions about correctness

I Have only had time to cover some basics
I Questions?

Now on to speed!
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Fast computing

High throughput computing
I Can parallelise and buffer data for later processing
I LHC, SKA - this talk
I Maximise throughput = events/second

Low latency computing
I Pointless or impossible to buffer
I High frequency trading, autonomous vehicles

High performance computing
I Problems that don’t parallelise easily - supercomputer
I Climate modelling
I Fast connections between processors, lots of RAM
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CPUs 101

I Moore’s Law no
longer holding
for CPU clock
speed (since ≈
2006)

I Memory has
fallen behind
CPU - big
bottleneck
frequently
memory access

I More processing
power available
through
parallelism

Source: Herb Sutter
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http://www.gotw.ca/publications/concurrency-ddj.htm


CPUs 101

Fast memory is
expensive
I Fastest memory

kept in L1 cache,
slower in L2 etc

I Slow memory in
RAM

I Slowest of all is
hard disk

I Cache miss =
retrieving data
from a different
cache

Source: What Every Programmer Should Know About
Memory
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https://www.akkadia.org/drepper/cpumemory.pdf
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Pipelining

I Pipelining allows processors to execute multiple instructions per
clock cycle

Five stage Instruction pipeline

I Only works for linear code
I Branching (e.g. if and else) is a problem
I Can’t load anything past the branch point
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https://en.wikipedia.org/wiki/Instruction_pipelining


Branch prediction
I Module within CPU decides which branch to take (details here)
I Allows CPU to pipeline code with branches
I Significant penalty if you take an unexpected branch - CPU has to

load new code into pipeline

I Solution: remove branches if possible
I Unbalance your branches - 50/50 if else is harder to predict than

e.g. 90/10 if else
I Sort data (see most popular ever Stack Overflow question)
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https://danluu.com/branch-prediction/
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array


Parallelism/concurrency

I An entirely parallelisable calculation is referred to as embarrassingly
parallel
I Event generation: every collision has no dependency on the previous
I Simulate each collision on a separate CPU: scale to number of CPUs

available
I Most calculations have a parallel and serial component, which limits

the speedup
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Parallel and serial components
Silly example
I Making a car requires 1000 identical parts: each part takes 1 minute

to make
I The 1000 identical parts must be assembled in a final step: this

takes 60 minutes
Serial path
I 1000 parts assembled by a single worker + final assembly = 1000 +

60 minutes = 1060 minutes
Parallel path
I 1000 parts assembled by different workers simultaneously + car

assembly = 1 + 60 minutes = 61 minutes
Maximum speedup
I 1060/61 = 17.4

No further gains without improving the final assembly (serial part)
I Amdahl’s law turns this kind of reasoning into a formal statement
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Parallelism

Flynn’s taxonomy (1966)
I SISD (Single instruction, single data) single-threaded operation
I SIMD (Single instruction, multiple data) vector operations
I MISD (Multiple instruction, single data) fairly rare in practice
I MIMD (Multiple instruction, multiple data) multi-threaded operation
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Vectorisation/SIMD

I Modern CPUs can execute the same instructions on multiple data
simultaneously

1 std::array<int, 100> int_array;
2 for (unsigned int i = 0; i < 100; i++) {
3 int_array[i] = i*4;
4 }

I Different architectures depending on CPU generation: MMX, SSE,
AVX
I Code generated for one instruction set will not work with another
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Auto-vectorisation
I Compiler can generate appropriate vector instructions for loops etc
I Will not always apply it if not beneficial - see backup for an example

where GCC and Clang disagree

1 #include <array>
2 #include <iostream>
3
4 int main() {
5 std::array<int, 100> int_array;
6 for (unsigned int i = 0; i < 100; i++) {
7 int_array[i] = i*4;
8 }
9 std::cout << int_array[10] << std::endl;

10 return 0;
11 }

clang++ -msse4.2 -std=c++11 vec.cpp -O2 -Rpass=loop-vectorize
vec.cpp:6:2: remark: vectorized loop (vectorization width: 4,

interleaved count: 1) [-Rpass=loop-vectorize]
for (unsigned int i = 0; i < 100; i++) {
^

#similarly: g++ -std=c++11 vec.cpp -O3 -fopt-info-vec
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Vectorisation by hand
I Autovectorisation is fragile: re-order your code and it can disappear
I Can write using vector intrinsics: functions that act on arrays of

data and operate accordingly
I Resulting code will not compile on different CPU type (e.g. ARM,

older Intel/AMD)
I More complicated to write
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Vectorisation by someone else’s hand

I Easiest solution: use a library written by an expert
I E.g. for cos(), exp(), atan2()

I CERN VDT
I Intel and AMD mathematical function libraries (recipe in backup)

I For matrix algebra
I Eigen
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https://github.com/dpiparo/vdt
http://eigen.tuxfamily.org/index.php?title=Main_Page


Multiple instructions, multiple data (MIMD)
MIMD: multi-threading
I A thread is a sub-program controlled by your main program
I Operating system decides when and on which CPU they run
I Thread order is non-deterministic: can lead to difficult bugs

I Race conditions, deadlocks, irreproducible output
I Usually one thread per CPU
I Swapping between threads on one CPU: “hyper-threading”

from Wikipedia
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https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)


Threading example with OpenMP
#include <iostream>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(4)
{

int thread = omp_get_thread_num();
int total = omp_get_num_threads();
std::cout << "Greetings from thread " << thread << "

 out of " << total << std::endl;
}
std::cout << "parallel for ends." << std::endl;
return 0;

}
g++ -fopenmp test_omp.cpp && ./a.out
Greetings from thread 1 out of 4
Greetings from thread 0 out of 4
Greetings from thread 3 out of 4
Greetings from thread 2 out of 4

I Must program in a way that avoids dependence on thread order or
data local to each thread
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Threading libraries

I Intel Threading Building Blocks: used by ATLAS, CMS, LHCb for
multi-threaded data processing

I OpenMP is best for simpler situations with limited relationships
between threads

I Other frameworks exist: e.g. HPX is gaining some momentum
Many more details on threading available in Graeme Stewart’s
concurrency lectures (with worked examples)
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https://github.com/STEllAR-GROUP/hpx
https://github.com/graeme-a-stewart/cpp-concurrency/
https://github.com/graeme-a-stewart/cpp-concurrency/


Brief digression on GPU programming
I Initially designed for graphics calculations: matrix and vector

operations
I Tailored towards embarrassingly parallel problems
I Increasingly used for scientific applications, machine learning
I Several competing options for programming

I CUDA for NVidia
I HIP for AMD
I OpenCL, SYCL: multi-platform

I HEP software moving towards these, but difficult/labour-intensive to
port

I Increasingly popular for supercomputers etc: dragging HEP that way
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Parallelism conclusions

I Vectorisation and multi-threading are harder to work with than
single-threaded programming
I But necessary if you want to get the highest possible performance

I Even if you don’t need the best performance, you can still apply
some of this through libraries

Next topic: measuring performance
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Measuring runtimes

I Basic solution: time command
I user = time spent in your code
I sys = time spent in (Linux) kernel code
I real = sum of user + sys = Walltime

>time factor 1234567890987654321123456789333333333
1234567890987654321123456789333333333: 3 3 3 23 43

27062723775121 1708375824282413291

real 0m0.363s
user 0m0.321s
sys 0m0.000s

I You care about real, but you can only affect user
I If you’re worried about system calls, you can use strace to see which

ones are used (see e.g. Julia Evans strace zine)
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Walltime

I Walltime is the most important
number for profiling, but also
the most difficult to measure
accurately
I Varies with CPU
I Some variation from

operating system
I Penalty for running in a

virtual machine
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Measuring runtimes
I Next level in complication: debugger
I Start your program, then randomly interrupt it a few times and see

which function it’s in

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in SiSpacePointsSeedMaker_ATLxk::

production3Sp() ()
from libSiSpacePointsSeedTool_xk.so

(gdb) bt
#0 0x00007f8d81f09b55 in production3Sp() ()

from libSiSpacePointsSeedTool_xk.so
#1 0x00007f8d81f0baaa in production3Sp() ()

from libSiSpacePointsSeedTool_xk.so
#2 0x00007f8d81f0bc0b in find3Sp() ()

from libSiSpacePointsSeedTool_xk.so

I This is the callstack
I If your program spends 90% of its time in function X, you have a

90% chance of catching it
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Sampling profilers

I Congratulations, you’ve made a basic sampling profiler!
I Sample = interrupt, look at the call stack

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
(gdb) bt
#0 0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
#1 0x00007f8d81f0baaa in frameworkCode() ()

from frameworkCode.so
#2 0x00007f8d81f0bc0b in main() ()

from program.so
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Cost

I costlyFunction() (top of the stack trace): where program was when
halted
I “Self cost”

I frameworkCall(), main(): call the function doing the work
I “Total cost”

I Self cost ≤ total cost
I Focus optimisation efforts on functions with highest self-cost

#0 0x00007f8d81f09b55 in costlyFunction() ()
from costlyNumerics.so

#1 0x00007f8d81f0baaa in frameworkCall() ()
from frameworkCode.so

#2 0x00007f8d81f0bc0b in main() ()
from program.so

I Some would argue this is the one true profiler
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Sampling profilers
I Automate the call stack sampling procedure, generate a call graph

(can be nicely visualised in KCacheGrind)
I gperftools, Intel VTune, igprof
I Can also assign cost to lines of code (but take with a pinch of salt)
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VTune
I Intel VTune is an excellent tool
I Free to download, if you register with Intel
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Instrumentation

I High-level languages (e.g. C++) have inbuilt timing facilities:

us ing namespace std ;
us ing namespace std : : chrono ;
auto start_t ime = high_reso lut ion_c lock : : now() ;
doSomething () ;
auto end_time = high_reso lut ion_c lock : : now() ;
cout << ”Time : ␣” << durat ion_cast<microseconds >(end_time −

start_t ime ) . count () << endl ;

I Known as “instrumenting” your code
I Useful, but has some cost - don’t e.g. try to measure within tight

loops
I Google Benchmark builds this into a useful framework to benchmark

functions
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Emulation

I Callgrind tool (part of Valgrind2)
I Emulates a basic modern CPU, with level 1, level 2 caches, branch

prediction (somewhat configurable)
I Runs slowly
I Information about cache misses and branch misprediction
I Produces output suitable for KCacheGrind

2Very useful suite of tools for debugging and profiling
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Instrumentation
I perf is now the gold standard - sampling and instrumenting
I Part of Linux kernel (best results with new kernels)
I Monitor performance monitoring counters (PMCs)
I VTune also has access to these

I Some features require root access

perf stat -d program
10 152 172 182 cycles:u #

3,451 GHz (49,86%)
14 584 154 073 instructions:u #

1,44 insn per cycle (62,43%)
2 318 605 154 branches:u #

788,130 M/sec (74,93%)
44 768 463 branch-misses:u #

1,93% of all branches (75,00%)
4 116 170 377 L1-dcache-loads:u #

1399,150 M/sec (74,18%)
167 821 302 L1-dcache-load-misses:u #

4,08% of all L1-dcache hits (25,06%)
45 252 042 LLC-loads:u #

15,382 M/sec (24,89%)
8 794 669 LLC-load-misses:u #

19,43%
of all LL-cache hits (37,33%)
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Profiling thoughts

I It’s a cliche, but the biggest improvements usually come from
changing algorithm, not minor changes to code

I Many profilers available
I Measure and benchmark
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Compiler optimisation

I Standard compilers (GCC, clang) can do a lot of optimising for you!
I -O0 = no optimisations applied
I -O1, -O2 = basic, safe optimisations applied
I -03 = expensive optimisations (take a long time, may actually make

code slower) applied
I O2 is a good optimisation reference level - try also O3
I Measure at O2/O3 before optimising by hand
I Fine-tuned optimisation options available - check GCC/clang

documentation for details
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Optimisation example
I GCC and Clang compilers can reduce square example3 down to

something sensible

int square(int n)
{

int k = 0;
while (true)
{

if(k == n*n)
{

return k;
}
k++;

}
}

→
int square2(int n)
{

return n*n;
}

I Optimising compilers are amazing - you only need to care when
automatic optimisation fails

3NB: Don’t write a square function, just square numbers in the code
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https://godbolt.org/g/fpbDGs


CPU optimisation

I Once you’ve identified which part of your code takes the most time,
you can start optimising

I Strategies are somewhat language-dependent, but some general
points always true

I Compiled languages (C++, Fortran) faster than interpreted
(Python, Ruby)

I Standard libraries (FFTW, BLAS, Eigen) likely faster than your own
code - don’t reinvent the wheel!
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Floating-point operations

I Addition is faster than multiplication (usually compiler will do this
for you if needed)

I Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

I Rearrange calculations to minimise number of operations
I Compiler won’t necessarily do this for you (floating point rules)

y = d*x*x*x + c*x*x + b*x + a; //Bad
y = x*(x*(x*d+c)+b) + a; //Good

I Some of these rearrangements lose clarity
I Only do this if it’s genuinely a bottleneck
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Mathematical functions

I Square root is slow
I Trigonometric functions, exp, log, are slow

I Consider using an optimised library (see e.g. VDT)
I Trigonometric identities can help you

I For linear algebra, definitely use a library (e.g. Eigen)
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Loops

I Don’t recalculate within loops: move code outside
I Consider storing frequently calculated values

for (i = 0; i < 50; i++) {
for (j = 0; j < 50; j++) {

x = sin(5*i) + cos(6*j);
//Can move sin() into earlier loop

}
}
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Algorithmic complexity

I If possible, stick to standard algorithms (e.g. C++ std::sort) instead
of writing your own

I If the algorithm is a hotspot, consider trying out different algorithms
(note, flashing lights)
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Data structures

I Worth thinking about which data format fits your problem
I In C++, std::vector is probably a good fit (but make sure you

reserve enough size in advance!)
I std::map and std::unordered_map are also useful
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Points to remember

I Profiling and reasoning about code cannot tell you if you’re using
the wrong algorithm for your problem

I Writing your own implementation of something is an excellent way
to learn, even if you never use it

I Correctness must come before optimisation
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Memory 101
Programs have access to two pools of memory: stack and heap
I Stack:

I Small amount of memory associated with program
I Fast to access - can be e.g. in CPU L1 cache
I E.g. variables in a function

int f(int x) {
int i = 55;
return x + i;

}

I Heap:
I Slower to access than stack
I Can be dynamically allocated
I If you don’t free up memory, this is where it leaks
I All the RAM available on the machine (if it runs out, it will use hard

drive - v slow!)

int g(int x) {
int* i = new int(55);//On heap
return x + *i;
//Memory for i not given back to OS - leak

}
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Memory profiling

I Using too much memory is bad for two reasons
I Eventually you run out (e.g. memory leak)
I Allocating memory has a significant CPU cost - higher if your data

doesn’t fit in e.g. L1 cache
I A single large allocation is cheaper than several small allocations

I Better to access memory in order - data-locality
I Appropriate data structures help with this
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Different allocators

I Your program will not just receive the memory it asks for when it
asks for it

I Allocator decides how much to request at a time and how much
should be contiguous

I glibc used by default
I Others available, particularly jemalloc (Facebook) and tcmalloc

(Google)
I No need to recompile, just preload
I May work better for your memory access pattern than glibc - free

speedup!

LD_PRELOAD=/usr/lib/libtcmalloc.so.4 ./my_program
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Finding big allocations

I Scenario: your program is running out of memory
I How to track down large (e.g. 1 GB) allocations?
I tcmalloc provides a printout when this happens

tcmalloc: large alloc 2720276480 bytes == 0x73eda000 @
tcmalloc: large alloc 2720276480 bytes == 0x2a96f0000 @
tcmalloc: large alloc 2720276480 bytes == 0x34b932000 @

I Add a breakpoint at (anonymous namespace)::ReportLargeAlloc(
unsigned long, void*)
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Heap profilers
I jemalloc and tcmalloc both come with low-overhead profilers to

analyse which functions allocate most memory
I Output can be interpreted much as with a call-graph
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Memory profiling thoughts

I Memory profiling is more difficult than CPU profiling - tools less
advanced/convenient
I But improving all the time

I Can make a big difference if you’re using a lot of memory
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Profiling and optimisation conclusions

I A small amount of profiling/optimisation knowledge can
dramatically improve your application performance
I Profiling is more important than optimisation

I Advanced techniques useful once you’ve done the easy bits
I More detail and worked examples in workshop
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https://github.com/StewMH/OptimisationWorkshop


Conclusions

I A lot to cover in a single (long) lecture
I Continuing developments, particularly in concurrency and memory

safe programming
I Good debugging and profiling skills can help you in a lot of areas

throughout your PhD
I Particularly for C++, books (e.g. by Herb Sutter, Scott Meyers)

and videos (e.g. from CppCon)
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https://www.youtube.com/channel/UCMlGfpWw-RUdWX_JbLCukXg


Backup: Meltdown and Spectre

I Security vulnerabilities in branch predictors: discovered January 2018
I Allow an attacker to read information from a non-executed branch
I More details here, here and here
I Fixes will slow down certain types of program
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https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know
https://www.youtube.com/watch?v=IPhvL3A-e6E
https://www.youtube.com/watch?v=_f7O3IfIR2k


Backup: vec2.cpp
1 //Clang 6.0 thinks it's not worth it to vectorise, GCC 7.5

thinks it is
2 //g++ -msse4.2 -std=c++11 vec2.cpp -O3 -fopt-info-vec
3 //clang++ -msse4.2 -std=c++11 vec2.cpp -O2 -Rpass-missed=loop-

vectorize
4 #include <array>
5 #include <iostream>
6
7 struct particle {
8 float x; float y; float z; float t;
9 };

10
11 int main() {
12
13 std::array<particle, 100> part_array;
14 for (unsigned int i = 0; i < 100; i++) {
15 particle part;
16 part.x = i; part.y = i*2; part.z = i*3; part.t =

i*4;
17 part_array[i] = part;
18 }
19 std::cout << part_array[10].x << std::endl;
20 }

clang++ -msse4.2 -std=c++11 vec2.cpp -O2 -Rpass-missed=loop-
vectorize

vec2.cpp:14:2: remark: the cost-model indicates that
vectorization is not beneficial [-Rpass-missed=loop-
vectorize]

for (unsigned int i = 0; i < 100; i++) {
^

vec2.cpp:14:2: remark: the cost-model indicates that
interleaving is not beneficial [-Rpass-missed=loop-
vectorize]
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