Useful things to know about accelerators - part I

C. T. Rogers

ISIS
Rutherford Appleton Laboratory

Accelerators - A Window on Nature

- Particle accelerators provide the source for most high energy physics experiments
- Provide high luminosity, high energy beams for colliders
- Provide high brightness beams for secondary particle production
- Also key technology for life sciences, engineering, chemistry
- How do they work?
- How can we get to high energy?
- How can we keep the beam in the accelerator?
- How can we get to high luminosity?
- What are the main HEP facilities in the world today?
- What might HEP facilities look like in the future?

Accelerator Components

- Most accelerators share similar components
- Main components of an accelerator
- Bending - dipoles
- Focussing - quadrupoles
- Acceleration - RF cavities
- Also
- Vacuum
- Diagnostics
- Targets for secondary particle production
- First Lecture: Derive basic theory of accelerator physics
- Second Lecture: Discuss accelerator equipment and techniques

Lorentz force law

- Fundamental equation for particles moving through fields

Force			Magnetic Field	Electric Field
	Charge	Velocity		
	\vec{F}	$\vec{v} \times \vec{B}+q$	\triangle	(eq. 1)

- Magnetic force is perpendicular to velocity
- Magnetic field conserves energy
- Electric force is weaker by factor velocity
- Magnets are better for bending and focussing

Magnetic Rigidity and Bending

- Simplest magnet - "dipole"
- Uniform magnetic field perpendicular to beam direction

Lorentz force (eq. 1) + centripetal motion:

$$
q v B=\frac{p v}{\rho}
$$

Rearranging:

$$
\underbrace{B \rho}=\frac{p}{q}
$$

Magnetic Rigidity

- Constant force \rightarrow constant curvature \rightarrow circular motion
- Magnetic rigidity parameterises momentum
- Charge-to-mass ratio important when accelerating multiple particle species

Worked example - LHC

- If we wanted to accelerate, say, 7 TeV particles, what bending radius is required?
- Maximum dipole field around 8.3 T

$$
\begin{aligned}
B \rho & =\frac{p}{q} \\
\rho & =\frac{p}{q B}=\frac{7}{0.3 \times 8.3}=2.8 \mathrm{~km}
\end{aligned}
$$

- Nb: LHC radius ~ 4.1 km
- Need space for detectors, etc

Quadrupole magnets

- If we only had bending magnets, particles would soon be lost from the accelerator
- Need to keep the particles in the accelerator using focussing elements
- Usually use quadrupoles
- Field stronger away from beam centre
- Like a spring or pendulum
- Simple harmonic motion
- Overall focussing by alternating the gradient

Quadrupole field - horizontal (1)

- For a particle moving near to the z-axis

$$
\vec{F}=q \vec{v} \times \vec{B}+q \vec{E}
$$

$$
\vec{B}=\left(b_{0} y, b_{0} x, 0\right)
$$

- Considering only p_{x} for now

$$
\frac{d p_{x}}{d t}=q \frac{d z}{d t} B_{y}
$$

- Use the chain rule

$$
\frac{d p_{x}}{d t}=\frac{d p_{x}}{d z} \frac{d z}{d t}
$$

- Combining these equations:

$$
\frac{d p_{x}}{d z}=q b_{0} x
$$

Quadrupole field - horizontal (2)

$$
\frac{d p_{x}}{d z}=q b_{0} x
$$

- Definition of x-component of momentum

$$
p_{x}=m \gamma v_{x}=m \gamma \frac{d z}{d t} \frac{d x}{d z}=p_{z} \frac{d x}{d z}
$$

- Substitute this definition into ${ }^{\circ}$ gives

$$
p_{z} \frac{d^{2} x}{d z^{2}}=q b_{0} x
$$

- Rearrange and wrap up constant terms in focussing strength k

$$
\frac{d^{2} x}{d z^{2}}-k x=0
$$

Quadrupole field - vertical

- Lorentz force law with quadrupole field definition

$$
\frac{d p_{y}}{d t}=-q b_{0} v_{z} y
$$

- Use chain rule and eliminate v_{z}

$$
p_{z} \frac{d^{2} y}{d z^{2}}=-q b_{0} y
$$

- Rearrange and wrap up constant terms in defocussing strength k

$$
\frac{d^{2} y}{d z^{2}}+k y=0
$$

Solutions

- Motion is governed by

$$
\frac{d^{2} x}{d z^{2}}-k x=0 \quad \frac{d^{2} y}{d z^{2}}+k y=0
$$

- This is simple harmonic motion - solutions are of form

$$
x=x_{0} \cos (\sqrt{k} z)+\frac{d x_{0}}{d z} \frac{1}{\sqrt{k}} \sin (\sqrt{k} z)
$$

- Taking derivative

$$
\frac{d x}{d z}=-x_{0} \sqrt{k} \sin (\sqrt{k} z)+\frac{d x_{0}}{d z} \cos (\sqrt{k} z)
$$

For y

$$
\begin{aligned}
y & =y_{0} \cosh (\sqrt{k} z)+\frac{d y_{0}}{d z} \frac{1}{\sqrt{k}} \sinh (\sqrt{k} z) \\
\frac{d y}{d z} & =y_{0} \sqrt{k} \sinh (\sqrt{k} z)+\frac{d y_{0}}{d z} \cosh (z)
\end{aligned}
$$

Transfer Matrix

- Just thinking about x, the particles move according to

$$
\begin{aligned}
& x=x_{0} \cos (\sqrt{k} z)+\frac{d x_{0}}{d z} \sin (\sqrt{k} z) \\
& \frac{d x}{d z}=-x_{0} \sqrt{k} \sin (\sqrt{k} z)+\frac{d x_{0}}{d z} \sqrt{k} \cos (\sqrt{k} z)
\end{aligned}
$$

- We can rewrite this as a matrix

$$
\binom{x}{\frac{d x}{d z}}=\left(\begin{array}{cc}
\cos (\sqrt{k} z) & \frac{1}{\sqrt{k}} \sin (\sqrt{k} z) \\
\sqrt{k} \sin (\sqrt{k} z) & \cos (\sqrt{k} z)
\end{array}\right)\binom{x_{0}}{\frac{d x_{0}}{d z}}
$$

- This matrix is known as the quadrupole's transfer matrix

$$
\underline{u_{1}}=\boldsymbol{M}_{\mathbf{0 1}} \underline{u_{0}}
$$

Questions

Questions

- Exercise - what is the transfer matrix for a drift space, that is a region with no fields at all?
- What is the force acting on the particle?
- What is $x(z)$ in terms of $d x_{0} / d z$ and x_{0}
- What is $\mathrm{dx} / \mathrm{dz}$ in terms of $\mathrm{dx} \mathrm{o}_{0} / \mathrm{dz}$
- Now write that as a matrix

Questions

- Exercise - what is the transfer matrix for a drift space?
- What is the force acting on the particle?
- No force
- What is $x(z)$ in terms of $d x_{0} / d z$ and x_{0}

$$
x=x_{0}+\frac{d x_{0}}{d z} z
$$

- What is $\mathrm{dx} / \mathrm{dz}$ in terms of $\mathrm{dx}_{0} / \mathrm{dz}$

$$
\frac{d x}{d z}=\frac{d x_{0}}{d z}
$$

- Now write that as a matrix

$$
\binom{x}{\frac{d x}{d z}}=\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\binom{x_{0}}{\frac{d x_{0}}{d z}}
$$

Transfer Lines

- Transfer matrix defines transport through a region
- Transfer matrices can be combined by multiplication
- Say we have transfer matrices like:

$$
\begin{aligned}
& \underline{u_{1}}=\boldsymbol{M}_{01} \underline{u_{0}} \\
& \underline{u_{2}}=\boldsymbol{M}_{12} \underline{u_{1}}
\end{aligned}
$$

- Then

$$
\underline{u_{2}}=M_{12} M_{01} \underline{u_{0}}
$$

- i.e. we can define a combined transfer matrix like

$$
M_{02}=M_{12} M_{01}
$$

Phase space

- Another instructive way to look at beam optics is by considering the phase space

Periodic Lattices

- Following n identical cells or turns in a ring with one-turn matrix \boldsymbol{M}

$$
\underline{u_{n}}=\boldsymbol{M}^{n} \underline{u_{0}}
$$

- Rewrite

$$
\boldsymbol{M}=\boldsymbol{I} \cos \mu+\boldsymbol{J} \sin \mu
$$

- So

$$
\boldsymbol{J}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \quad \text { with } \gamma \beta-\alpha^{2}=1 \quad \text { and } \quad \boldsymbol{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
J^{2}=-I
$$

- And

$$
\boldsymbol{M}^{n}=\boldsymbol{I} \cos (n \mu)+\boldsymbol{J} \sin (n \mu)
$$

Periodic Lattices

- What does this mean?

$$
\boldsymbol{M}^{n}=\boldsymbol{I} \cos (n \mu)+\boldsymbol{J} \sin (n \mu)
$$

- Particles move around an ellipse in phase space if Trace $(\mathbf{M})<2$
" μ is the "phase advance"
- α, β and y are "Twiss parameters"
- Tell us the alignment of the ellipse

- Each particle sits on ellipse area ε - the particle's amplitude

Periodic Lattices and beams

- Beam is composed of many particles
- Particles occupy a region in phase space
" "Emittance" is area occupied by the entire beam
- Sometimes classify "RMS emittance"
- Area occupied by ellipse 1 RMS distance from beam centre
- Low emittance is crucial for

Matched beam

Beam ellipse

Emittance Growth

- Ideally emittance is conserved, but this is not always the case
- Long list of effects that can cause emittance growth
- Beam mismatch
- Scattering off residual gas
- Scattering off particles in the same beam
- Scattering off particles in other beams (e.g. in collider)
- Space charge
- Resonances:

$$
\begin{aligned}
& v_{x}=\frac{\mu_{x}}{2 \pi} \\
& j v_{x}+k v_{y}=N
\end{aligned}
$$

Mismatch

Emittance Reduction (Cooling)

- Several techniques to reduce emittance
- Synchrotron radiation cooling
- Stochastic cooling
- Laser cooling
- Electron cooling
- Ionisation cooling
" Fundamental principle is to remove "heat" from the beam using a neighbouring heat sink
- Comoving electron beam \rightarrow electron cooling
- Comoving laser \rightarrow laser cooling
- Emission of synchrotron radiation
- Photon emission caused by (principally) electrons bending in magnetic field

Questions

Questions

- What is behaviour of particles in phase space if
- Trace(M) < 2
- Trace(M) $=2$
- Trace(M) > 2

Questions

- What is behaviour of particles in phase space if
- Trace(M) < 2
- Motion is an ellipse
- Trace(M) $=2$
: $x \rightarrow+/-x$
- $\operatorname{Trace}(\mathrm{M})>2$
- Motion is a hyperbola

Longitudinal Dynamics

- So much for transverse motion (i.e. x and y planes)
- What about energy and acceleration?
- Electrostatic acceleration limited by breakdown potential
- Change in energy is given by voltage differential
- High voltage differentials cause breakdown (sparks)
- Practically limits electrostatic acceleration to few MeV
- To accelerate beyond MeV require oscillating electric field
- RF Cavities

RF cavity field

- RF cavity holds a resonating EM wave
- Recall Lorentz force law

$$
\vec{F}=q \vec{v} \times \vec{B}+q \vec{E}
$$

- Force is in direction of motion - energy changes!

RF cavity field

- In RF cavity

$$
\vec{E}=E_{0} \sin (\omega t+\phi)
$$

- Energy change of synchronous particle crossing at ϕ_{s} $\delta W=q T g E_{0} \sin \left(\phi_{s}\right)$
- T is factor to allow for phase to vary a bit during crossing
- g is the gap length

Phase stability

- Particle crossing at phase ϕ relative to synchronous particle

$$
\delta W=q T g E_{0} \sin \left(\phi+\phi_{s}\right)
$$

- Particle arriving early
- Fast
- t negative
- Gets smaller energy kick
- Ends up relatively slower
- Particle arriving late
- Slow
- t positive
- Gets bigger energy kick
- Ends up relatively faster
- Phase stability!

Dealing with momentum spread

- Momentum spread introduces a few effects
- Dispersion
- Chromaticity
- Momentum compaction
- Dispersion:
- Off-momentum particles follow a different trajectory
- Momentum compaction (rings):
- Different path length yields different time of flight
- Chromaticity:
- Off-momentum particles get a different focussing strength

Dispersion

- Recall the definition of magnetic rigidity

$$
B \rho=\frac{p}{q}
$$

- Particles having different momentum (p) get different radius of curvature
- Introduce dispersion D

$$
D=p \frac{d x}{d p}
$$

- Which is another optical function that we must make periodic

Chromaticity

- Chromaticity arises because quadrupoles focus differently for different momenta

$$
k=q \frac{b_{0}}{p}
$$

- This often limits the degree of focussing at a collision point
- Limits luminosity
- Can deliberately enhance/reduce chromaticity by
- Introduce a dispersion
- Using a magnet with variable focussing strength across the aperture - "sextupole"

Questions

Review

- Dipoles are used to bend a beam - rigidity is $B \rho=\frac{p}{q}$
- Quadrupoles are used to focus a beam: $k=q \frac{b_{0}}{p}$
- Beam in each of x and y can be characterised by 3 Twiss parameters and an emittance
- Lattices can be characterised by a phase advance
- RF cavities are used to accelerate the beam
- Introducing momentum spread, one can also define a dispersion (and its derivative with respect to z)

Finally... Iuminosity

- Luminosity defines the number of interactions in a collider per unit time for a given cross section
- Luminosity will increase if
- Beam is narrower
- Current is higher

Number of particles in each bunch

Revolution frequency

Number of bunches

$$
\widetilde{L}=\frac{N_{1} N_{2} f N_{b}}{4 \pi \sigma_{x} \sigma_{y}}
$$

Width of
Each bunch

What dictates luminosity?

$$
\widetilde{L}=\frac{N_{1} N_{2} f N_{b}}{4 \pi \sigma_{x} \sigma_{y}}
$$

- Typically
- Number of particles \rightarrow space charge
- Revolution frequency \rightarrow ring circumference
- Number of bunches \rightarrow RF frequency
- Beam width $\rightarrow \sqrt{\varepsilon \beta}$
- Emittance (cooling?)
- Twiss beta (final focus and chromaticity)

Next lecture...

- Accelerator equipment
- Types of accelerator
- Current facilities
- Future facilities

