

Superconducting Parametric Amplifiers for the Measurement of Absolute Neutrino Mass

Songyuan Zhao and Stafford Withington University of Oxford

22nd January, 2025

QTFP Community Meeting

CRES region

Monreal, B.; Formaggio, J. A. Phys. Rev. D, 2009, 80.

22nd January, 2025

UNIVERSITY OF

OXFORD

CRES region

Monreal, B.; Formaggio, J. A. Phys. Rev. D, 2009, 80. **CRES** requirement

QTNM collaboration (2024). arXiv preprint arXiv:2412.06338.

CRES region

Antenna reception patterns (inward looking phased array)

Monreal, B.; Formaggio, J. A. Phys. Rev. D, 2009, 80. Withington, S., Thomas, C., & Zhao, S. (2024). arXiv preprint arXiv:2401.03247.

22nd January, 2025

QTFP Community Meeting

UNIVERSITY OF

OXFORD

UNIVERSITY OF

Quantum limited amplification

Simulation from Dr. Seb Jones of the QTNM collaboration

- Intrinsically chirping signal
- Cannot integrate against time to improve signal-to-noise ratio
- Need for quantum limited amplification
 - Noise of commercial HEMT amplifier at 18 GHz: ~ 7 K
 - Quantum limited noise at 18 GHz: ~ 0.4 K

Kinetic inductance nonlinearity

Nonlinearity \rightarrow wave-mixing \rightarrow amplification

Josephson junction nonlinearity vs

Kinetic inductance nonlinearity

$$L \sim L_0 \left(1 + \frac{I^2}{I_*^2} \right)$$

- Higher saturation power
 - Maximum pump power is set by the film's critical current
- Higher operating temperature
 - High gain demonstrated at 4 K

- Higher operating frequencies
 - High gain demonstrated at 25 GHz
 - Pair-breaking frequency > 500 GHz
- Repeatable fabrication & controllable properties

Resonator vs travelling-wave amplifiers

 $\leftarrow \textcircled{0} \rightarrow \sim 1 \text{ m}$ Bandwidth $\sim 1 - 10 \text{ GHz}$ Rippling $\sim 10 \text{ MHz}$

Travelling-Wave Parametric Amplifier (TWPA)

 $\leftarrow - \rightarrow \sim 1 \text{ cm}$ Bandwidth $\sim 1 - 100 \text{ MHz}$ (future goal 500 MHz)

Resonator **P**arametric **A**mplifier (ResPA)

Fabrication of ResPAs

- UNIVERSITY OF OXFORD
- Single-layer coplanar waveguide
- Based on NbN thin-films
- ~ 25 devices per wafer
- Straightforward to scale to ~ 100 devices per wafer
- Tested ~ 10 devices
- All devices tested produced high gain (i.e. > 20 dB)

ResPA packaging

Operation modes: transmission amplifier

- Flexible operations
- Reflection or transmission operating modes
- Or more sophisticated configuration for other advantages

UNIVERSITY OF

OXFORD

Operation modes: reflection amplifier

Amplification measurement

- High gain of > 20dB measured over 1 MHz
- No artefacts
- Theory-guided operation: gain, bandwidth, profile shape all understood
- Theory paper: arXiv:2206.10512
- Experiment papers:
- Supercond. Sci. Technol. 36 (2023), 105010
- J. Phys. D: Appl. Phys. 58 (2025), 035305

14 of 23

Non-degenerate pumping

Non-degenerate pumping – phase sensitive gain

22nd January, 2025

UNIVERSITY OF

High frequency amplification

Data taken with the help of Dr. Boon Kok Tan and Dr. Nikita Klimovich

High frequency amplification

High temperature amplification

4K amplification

4K gain drift vs time (no attempt at stabilisation)

Cross-harmonic amplification

22nd January, 2025

QTFP Community Meeting

20 of 23

Pump-signal separation

- Prevent saturation of down-stream electronics
- Signal has high gain: ~ 15 dB
- Pump has high attenuation: ~ 12 dB

Future research directions

- Enhance bandwidth, target: 500 MHz
 - CRES sidebands
- Amplifier array
 - Qubit array readout
 - Phased-array antenna system
- Amplifier for 4K operation
 - HEMT-free readout chain
- Generation of microwave squeezed states
 - Interferometric experiments

Simulation from Dr. Seb Jones of the QTNM collaboration

QTFP Community Meeting

Thank you for listening!

22nd January, 2025QTFP Community Meeting