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Overview

@ Motivation: What and why’s of spacetime fluctuations
@ Spacetime fluctuations and interferometric output

o ldentifying gravity model signatures: Role of correlations in spacetime
fluctuations

@ Summary
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Bosonic fields and vacuum fluctuations

@ Bosonic field vacuum: Not a complete absence of bosons

Vacuum fluctuations: Random creation and annihilation of bosons.

Can this be observed?
Ex: Lamb-Retherford experiment measured the Lamb shift.

Via radio-frequency transitions between 2s; 5 and 2py /; levels of the
Hydrogen atom.

Lamb shift measurement laid the foundation for quantum electrodynamics.

Detecting vacuum fluctuations = Detecting “quantumness” of field.
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Spacetime fluctuations

Gravitational vacuum fluctuations = Random fluctuations of spacetime

manifold.
Flat Minkowski spacetime
Gravitational vacuum fluctuations
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[Image source: Wikipedia]
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Detecting vacuum fluctuations of gravitational field

1. Detecting effects of spacetime fluctuations in the dynamics of two
masses.

[Ref: A. Malcolm, Z.-W. Wang, B. Sharmila, and A. Datta, arXiv preprint arXiv:2501.03886
(2025).]

2. Characterising the role of correlations in spacetime fluctuations in
optical high-precision interferometers.
[B. Sharmila, S. Vermeulen, and A. Datta, Manuscript under preparation.]
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Dynamics of masses in gravitational vacuum

Dynamics is very sensitive to the choice of the position observable!

Frame-independent geodesic
separation: Dissipative dynamics

Free particle:
Frame-dependent co-ordinate ‘

separation: Unitary dynamics
Harmonically bound:
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Frame-independent geodesic

separation: Frequency shift oc Q3

Frame-dependent co-ordinate
separation: Frequency shift oc log Qyax

Quax: UV cut-off introduced to regularise divergence.

Results reported in arXiv:2501.03886!
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Spacetime fluctuations

@ Spacetime foam:

o Proposed by Wheeler [Ref: J. A. Wheeler, Ann. Phys. (NY) 2, 604 (1957)].

o Effective quantum field theories [Ref: D. Carney et al., arXiv preprint
arXiv:2409.03894 (2024)].

o Holographic models [Ref: D. Li et al., Phys. Rev. D 107, 024002 (2023)].
@ Semiclassical models [Ref: J. Oppenheim et al., Nat. Commun. 14, 7910 (2023)].

o Reading off signatures specific to various gravity models.

° . high precision can be exploited to study spacetime
fluctuations.
[Ref: G. Amelino-Camelia, Nature 398, 216 (1999).]
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metric setups...

Schematic diagram of aLIGO.
Schematic diagram of the Holometer and

QUEST setups.

Electric field Eoy; of the output light is obtained.
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QUEST setup
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Modelling metric fluctuations and its effects

-1 0 0 0 2w(r) 0 0 0
0O 1 00 0 0 00 ) _

9o {0 0 1 0 + 0 00 0 with w < 1; Vil g
0 0 0 1 0 00 0

w=0; wr)w(rs) =Tsp(ri —ra);

I's: Fluctuation strength; p(ri,r2) with ¢,.: Correlation scale.

\U/ Using relativistic wave eqn.

out (Fla TO)Egut (FZ, T0 + AT) COS 2VCATT

Spectral density o [~ dA; E!

i =j == Power spectral density S(v). [i,5 =101 70 = 2£/c]
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Assumptions involved

© Eikonal approximation: A\ — 0, i.e., wavelength is the smallest
length scale in the system, (Eg: Correlation scale ¢, > \).

@ Slowly varying envelope approximation (SVEA): The rate of
metric-fluctuation-induced-phase fluctuation is much smaller than the
light frequency.

© Stationarity of the metric fluctuation: w = 0;
w(ry)w(re) = T's p(r1 — r2), w(ry)w(re): non-negative definite
function, ...

@ Correlation function p is isotropic in space.

© Stationarity of the resulting random process in path difference:
Required for transforming from the autocorrelation function to the
spectral densities. This is checked to be true in the cases considered.
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PSDs: Correlation integrals and Response functions

Spectral densities computed using two approaches:
Holometer:

@ Using correlation integrals: Cosine transform of correlation integrals,

S(f) = C;,l:s JoodAr {U(AT) — £(AT)] cos 2mfA ;.

o: Intra-arm correlation integral, &: Inter-arm correlation integral.

@ Using response function: S(f) = [ d3F; Ts 5(2n f, k1) Xi(f, k1)

p: 4-d Fourier transform of p, X;: interferometric response function.

More...
aLIGO:
Response function offers interesting insight: S(f) = fd3E1 Ts p(27 f, El) xi(f, 121) Xee (f, El)
p: 4-d Fourier transform of p, Xp: Fabry-Perot cavity response function.

More...
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Scaled PSDs Sp(v) = (1{7) S()

Semiclassical model:

p(r1,r2) = ps(|AT12|)pi (| At12])
[J. Oppenheim et al., Nat. Commun. 14, 7910 (2023).]

) S vs scaled frequency v = fL/c

L2

Quantum pixellon model:
1
p(r1,T2) o Ty

[D. Li et al., Phys. Rev. D 107, 024002 (2023).]
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[Manuscript in preparation.]
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Spatial vs Spacetime separation

Scaled PSD Sx(v) = (111,,‘) SL(';) vs scaled frequency v = fL/c

Spatial sep.: |A72| Spacetime sep.: Ariz = /|A712|2 — ¢2|Aty2|?
Inverse correlation functions:

I 2ol —
p(r1,r2) = [z O(AT12| - c|Atra]) plr1,r2) = <= O(ATIL| — c|Atra])
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Summary of the spectral density behaviour for different correlation function

classes.
Correlation type | Low frequency High frequency Scaled PSD overlaps
for different choices of £
(a) Factorised Sa(r=0)>0 o 1/v2 Yes with Sy(v)
Pr (For Oppenheim model only)
(b) Inverse Sx(v=0)=0 x1/v(m=1) Yes with Sx(v)
Pim Sn(v) oc v? or x 1//v (m = 2)
(c) Exponential | Sx(¥r=0)>0 x1/v2 (m=1) No
Prm or oc e~¥/50 (m=2)

m = 1: spatial separation and m = 2: spacetime separation.

We need interferometers that at least have a frequency span of 0.1 < v < 10.

QUEST is best suited as its proposed span of 1 MHz to 250 MHz corresponds to
0.03<v T8
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@ Role of the correlation functions assessed clearly.

o Clear characteristic signatures identified for classes of correlation
function.

@ Experimental setups most suitable for the detection of spacetime
fluctuation identified.
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Spacetime fluctuations: Single-parameter models

@ Single-parameter models based on hypothesised holographic principle:

Az > loy/L/R and Az > L1704

Ax: std. dev. in path difference, /p: Planck length, R: effective size of interferometer, L:
interferometer arm length, and a € (0, 1].

[Ref: Y. J. Ng et al., Mod. Phys. Lett. A9, 335 (1994); Y. J. Ng, Mod. Phys. Lett. A
18, 1073 (2003).]

@ R, o decide extent of macroscopic coherence of spacetime
fluctuations. [Ref: G. Amelino-Camelia, Mod. Phys. Lett. A 9, 3415 (1994) ]
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Spacetime fluctuations: Macroscopic coherence

No coherence R =L or o = 1:

Ax > lp

Macroscopic coherence R =/, or @ = %:

Ax > /L

Macroscopic coherence in Holographic noise model.

. high precision can be exploited to study spacetime
fluctuations.
[Ref: G. Amelino-Camelia, Nature 398, 216 (1999).]
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PSDs: Correlation in

als and Response function

Using Correlation integrals:

5(f)
N % /000 dAr {U(AT) *i(AT)] cos 2 f A,

where

o(Ar)
70 70

- /dt1 /dtg 0(0,0, s(t1) — s(ta), c(t1 + Ay — t2))
0 0

70 70

= [t [ ata p(s(ta) = s(t2),0,0,c(t1 + A = t2),
0 0

£(A7)
™ 70

- /dn /dm p(5(t1), 0, —s(t2), c(t1 + Ar — t2)).
0 0

Here s(t) = ct if t < 70/2 and s(t) = 2L — ct if
t>T10/2.

Using Response function:

S(f) = / &F, Ts p2n f, K1) X(f, F).

Here, the interferometeric response function
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PSD in aLIGO

Using Correlation integrals:

2F~T4 1 2 0
T
- M

q1,92=1

(o)
/ dA, |:O—(QI:‘Z2)(AT) - E(‘IIJIZ)(AT):| cos 2 fAy,
0

S5(f) =

where

U(PYQ) (A-r)
1’/"0
0
pTQ

qTQ

dty / dtz p(0,0, s(t1) — s(t2), t1 + Ar — t2)
0

q7g

= dty / dta p(s(t1) — s(t2),0,0,t1 + Ar — t2),

0 0

E(p’Q)(AT)
PTO a70

= dty /dtz p(s(t1),0, —s(t2),t1 + Ar — t2).
0 0
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Using Response function:

S() = [ & Tepens, ) RS R
Here, the interferometeric response function

Ru(f, k1) = Xi(f, 1) Xee (F, K1),

s F) = (£)7 |eatrnfo - xR’
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