

3-FLAVOUR OSCILLATION RESULTS FROM NOVA WITH 10 YEARS OF DATA

Alexander Booth RAL PPD Seminar Series November 13th, 2024

Neutrinos 101

Why Study Neutrinos?

- Neutrinos are "weird":
 - Neutrino mixing looks very different from quark mixing.
 - Neutrino masses are tiny compared to rest of SM.

- Potentially CP-violating:
 - Window into matter-antimatter asymmetry.

Open questions remain!

Neutrino Oscillations 101

• Create in one flavour (ν_{μ}), but detect in another (ν_{e}).

Neutrino Oscillations 101

• Create in one flavour (ν_{μ}), but detect in another (ν_{e}).

• Each flavour is a superposition of different masses.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

Neutrino Oscillations 101

• Each flavour is a superposition of different masses.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \xrightarrow{3 \text{ flavours}} \nu_\lambda = \sum_{m=1}^3 U^*_{\lambda m} \nu_m$$

3 angles, 1 complex phase.

$$|\nu_{k}(t,L)\rangle = e^{-i\frac{m_{k}^{2L}}{2E}}|\nu_{k}(0,0)\rangle$$

$$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \sim P\left(U(\theta_{23}, \theta_{13}, \delta, \theta_{12}), \Delta m_{21}^{2}, \Delta m_{32}^{2}, \Delta m_{31}^{2}, \frac{L}{E}\right)$$

$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\overset{\text{"Atmospheric" "Reactor" sector sector$$

Mass Ordering & MSW Effect

Normal Ordering

Inverted Ordering

- Probe this using the matter effect.
- Electron neutrinos experience additional interactions with electrons in matter compared to other flavours.
- Different for neutrinos and anti-neutrinos -> **fake CP**!

We Love the Matter Effect!

• $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ enhanced in IO, suppressed in NO.

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Octant of θ_{23} .
 - CP phase: δ_{CP} .

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Octant of θ_{23} .
 - CP phase: δ_{CP} .

Normal Ordering

Inverted Ordering

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Atmospheric parameters: $\sin^2(\theta_{23}), \Delta m^2_{32}$
 - CP phase: δ_{CP} .

$$P(\nu_{\mu} \to \nu_{e}) \neq P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})?$$

<u>k</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Atmospheric parameters: $\sin^2(\theta_{23}), \Delta m_{32}^2$
 - CP phase: δ_{CP} .

<u>\</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Atmospheric parameters: $\sin^2(\theta_{23}), \Delta m_{32}^2$
 - CP phase: δ_{CP} .

$$\delta_{CP} = \pi/2$$

<u>k</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$ depends on:
 - Mass ordering and matter effects.
 - Atmospheric parameters: $\sin^2(\theta_{23}), \Delta m_{32}^2$
 - CP phase: δ_{CP} .

- Neutrinos are well worth studying!
- There are 7 parameters governing 3-flavour oscillation.
- NOvA is interested in 3.
- Make measurements by measuring muon neutrino disappearance probabilities ($P(\nu_{\mu} \rightarrow \nu_{\mu})$) and electron neutrino appearance probabilities ($P(\nu_{\mu} \rightarrow \nu_{e})$).

NOvA Experimental Setup

NOvA Overview

- Long-baseline neutrino oscillation experiment.
 - NuMI **neutrino beam** at Fermilab.
 - **Near detector** to measure beam before oscillations.
 - **Far detector** measures the oscillated spectrum.
- **Primary goal,** measurement of 3flavour oscillations via:

$$\begin{array}{c} \nu_{\mu} \rightarrow \nu_{\mu} , \nu_{\mu} \rightarrow \nu_{e} \\ - \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} , \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \end{array}$$

- Other goals include:
 - Search for sterile neutrinos.
 - Neutrino cross sections.
 - Supernova neutrinos.
 - Cosmic ray physics.

The NOvA Collaboration

> 260 people, ~ 50 institutions, 8 countries

How We Make Neutrinos: NuMI Beam

Far Detector

The NOvA Detectors

- Both are large, (FD 60 m long).
- Functionally identical: consist of extruded PVC cells filled with 11 million litres of liquid scintillator.
- Arranged in alternating directions for 3D reconstruction.

The NOvA Detectors

• Light produced when charged particle passes through cells.

- The light is picked up by wavelength shifting fibre. Transported to an Avalanche PhotoDiode light collected and amplified.
- Good timing resolution. ~ few ns.

Analysis Methodology

Observe flavour change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections and detector response.

Selection: Cosmic Rejection

Cosmic rejection critical for FD: 11 billion cosmic rays/day

Selection: ν_{μ}

Selecting & Identifying Neutrinos

- Use **convolutional neural network** technique from deep learning.
 - NOvA was first HEP experiment to use CNN for PID.
- Successive layers of "feature maps":
 - Create many variants of original image which enhance different features.
 - Variations which are best for enhancing most important features for PID are learned.
 - Output is a **multi-label classification**.
- Improvement in sensitivity equivalent to 30% more exposure.

Expanding ν_e Candidate Selection

- For NOvA's energy range and baseline the effect of the mass ordering is largest at lower energies in the range.
- Challenging for NOvA predicted number of events in this region is small.
- Pursuing these events with a new BDT classifier.

Expanding ν_e Candidate Selection

- Good separation in some regions.
- Only have sufficient statistics in the neutrino beam mode sample. Analogous sample in antineutrino beam mode is currently too small.
- Provides increase in sensitivity to the mass ordering of ~ few %.

Near Detector, ν_{μ}

NOvA Preliminary

- Band around MC shows the large impact of flux and cross-section uncertainties when using a single detector.
- Use samples as a data constraint on what we predict at the Far Detector.
- These samples are used to predict both the ν_{μ} and the ν_{e} signal spectra at the Far Detector.
- Appearing ν_e 's are still ν_μ 's at the Near Detector.

Extrapolation

Observe data-MC differences at the ND, use them to modify the FD MC.

- Significantly reduces the impact of uncertainties correlated between detectors.
 - Especially effective at rate effects like the flux (7% to 0.3%).

Impact of Systematic Uncertainty

- Overall systematic reduction is 10 to 15 percentage points.
- Systematics related to neutron propagation and detector response are now subdominant.

Detector Characterisation

- Improved model of light production in the mineral oil (scintillation and Cherenkov) in both detectors.
- Dedicated bench measurements and studies of stopping proton and muon candidates in data.
- Difference between MENATE and default GEANT4.10.4 used to motivate a systematic uncertainty.
- In future analyses MENATE will become part of our nominal simulation.

Oscillation Fit

- All results come from a joint fit to neutrinos + antineutrinos, electron + muon.
- Other PMNS parameters are constrained by PDG with one exception.
- Poisson log-likelihood ratio, systematics ~60 nuisance parameters.
- Bayesian approach using Markov Chain Monte Carlo to sample posterior probability distribution and build credible intervals.

Oscillation Fit

Results

ν_{μ} and $\bar{\nu}_{\mu}$ Data at the Far Detector

ν_e and $\bar{\nu}_e$ Data at the Far Detector

$\nu_2 - \nu_3$ Sector

Maximal mixing is allowed at $< 1\sigma$ in both cases.

Mild upper octant preference w/ 1D constraint (Bayes Factor 2.2, 69% odds).

$\nu_2 - \nu_3$ Sector

Most precise single experiment measurement of Δm_{32}^2 .

Mass Ordering with θ_{23} & δ_{CP}

• Consistency with previous result (*different reactor constraints used).

• Tighter contours almost everywhere.

• No strong asymmetry in the rates of appearance of ν_{ρ} and $\bar{\nu}_{\rho}$.

- No strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$.
- \bullet Disfavour ordering- δ_{CP} combinations which would produce asymmetry.

Exclude IO
$$\delta_{CP} = \frac{\pi}{2}$$
 at > 3σ
Disfavour NO $\delta_{CP} = \frac{3\pi}{2}$ at ~ 2σ

- No strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$.
- \bullet Disfavour ordering- δ_{CP} combinations which would produce asymmetry.

Prefer:

Normal ordering with Bayes Factor 3.2, 76% odds (frequentist significance 1.4σ).

Mass ordering preference is strengthened by the application of the reactor constraint. Expected: Phys. Rev. D 72: 013009, 2005

*Frequentist significance.

Summary

- First new 3 flavour neutrino oscillation result from NOvA since 2020:
 - Doubled neutrino-mode dataset and have analysed 10 years of neutrino and antineutrino data.
 - Updated simulation including improved light response model and neutron propagation uncertainty.
 - Expanded our selection with new low energy electron neutrino candidate sample.
 - The most precise single experiment measurement of Δm^2_{32} (1.5%).
 - Data favours a region where **matter and CP violation effects are degenerate**.
- Strong synergy with with reactor measurements:
 - \blacktriangleright Constraint on θ_{13} enhances upper octant preference (69% odds).
 - Constraint on Δm^2_{32} enhances normal ordering preference (87% odds).
- Compelling future oscillation prospects for NOvA!
 - Collect as many antineutrinos as we can before 2027 important for untangling degeneracies.
 - Analysis of test beam data on-going reduce uncertainties related to detector energy scale.
 - NOvA & T2K are actively exploring the scope and timeline for the next steps to take joint fit work forward.

Questions?

T2K-NOvA Joint Fit

Combining Long-baseline Experiments

Combining Long-baseline Experiments

Why Combine T2K & NOvA?

- Complementarity between the two experiments provides the power to break degeneracies.
 - Joint Analysis probes different oscillation environments, lifting degeneracies of individual experiments.
- In-depth review of:
 - Models, systematic uncertainties and possible correlations.
 - Different analysis approaches driven by contrasting detector design.
- Full implementation of:
 - Energy reconstruction and detector response of both experiments.
 - Combined detailed likelihood of both experiments.
 - Consistent statical inference across full dimensions of phase space.

CP Violation

- Jarlskog-invariant is parameterisationindependent* way to measure CP violation.
- $J = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta_{CP}$ $J = 0 : CP \text{ conversed}, J \neq 0 : CP \text{ Violation}$
- J = 0 lies outside of the 3σ credible interval for the Inverted Ordering.
- For Normal Ordering, a considerably wider range of probable values for *J*.

<u>*Phys. Rev. D 100, 053004 (2019)</u>

A Bit About Me...

• Collaborator in the NOvA & DUNE experiments.

The NOvA Collaboration

QMUL is one of the collaboration's newest institutions.

How We Make Neutrinos: NuMI Beam

- 120 GeV protons from main injector onto graphite target.
- Spill every ~1.5 s, lasts 10 us.
- Hadron spray directed by focussing horns (\pm 200 kA, FHC/RHC).
- Pions decay (mostly) to muon/muon neutrino pairs.

How We Make Neutrinos: NuMI Beam

NOvA Simulation

How to Detect a Neutrino

- Observe charged particles after a neutrino interacts with a nucleus.
- Lepton:
 - $\nu_{\mu} \text{ CC} \rightarrow \mu^{-}, \nu_{e} \text{CC} \rightarrow e^{-}.$
 - NC, no visible lepton.

- Hadronic shower:
 - May contain protons, one or more π^{\pm} , etc.
 - May have EM components from $\pi^0
 ightarrow \gamma\gamma$

- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Basic quality:
 - Number of hits, track angle, reasonable energy reconstructed.

- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Containment cuts:
 - Vertices in the fiducial volume.
 - Event contained within the detector.

- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- PID:
 - Deep learning approach.

- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Cosmic BDT:

- Tuned to reject cosmic ray events.

Selection

- Electron neutrino sample has second 'peripheral' sample containing high-confidence electron neutrino events close to detector walls.

Energy Reconstruction

Extrapolating Kinematics

FD

• Split the ND sample into 3 bins of p_{tr} extrapolate each separately to the FD. - Effectively "rebalances" the kinematics to better match between the detectors.

1.2

- Re-sum the p_t bins before fitting.

Systematic Uncertainties with p_t Extrapolation Σ

• Overall systematic reduction is 5-10%.

- 30% reduction in cross-section uncertainties.
 - Reduces the size of systematics most likely to contain "unknown unknowns."
 - Slight increase in systematics on lepton reconstruction.

- Understanding of neutrino interactions is constantly evolving.
- Upgrade to GENIE 3.0.6, gives freedom to chose the models.
- Even with many updated models, some custom tuning required.
 - **FSI**: tuned using external pion scattering data.
 - MEC/Multi-nucleon: tuned to NOvA ND data.

NOvA Preliminary

75 Nov 13th, 2024 Alexander Booth | RAL PPD Seminar Series

10⁴ Events

Improving Sensitivity to Oscillations

- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by energy resolution: bins of hadronic energy fraction.

- Sensitivity depends primarily on separating signal from background.
- Bin by purity: bin of low and high PID + peripheral.

Daya Bay / NOvA Correlations

J. Wolcott

77 Nov 13th, 2024 Alexander Booth | RAL PPD Seminar Series

Models & Systematics

Challenge: Decide what common physics parameters the two experiments have, should they be correlated and by how much.

Z. Vallari

Studying Correlations

- Strategy: evaluate a range of artificial scenarios to asses the impact of possible correlations:
 - E.g, fabricate parameters for each experiment which should have significant bias on Δm_{32}^2 and $\sin^2 \theta_{23}$ (size of uncertainty comparable to the statistical uncertainty).
 - Study the impact of fully correlating, uncorrelating and fully anti-correlating these parameters.
 - Uncorrelated and correctly correlated (full correlation) credible intervals agree very well while incorrectly correlating systematics shows a bias -> leaving systematics like these uncorrelated wouldn't have a significant impact in the analysis.

Studying Alternate Models

- Ensure analysis is robust to **alternate neutrino interaction models**.
 - Generate **mock data** by changing part of simulation to use an alternative model.
 - Fit these mock datasets and check impact on oscillation results.
- Pre-decided thresholds for bias:
 - Change in width of 1D intervals should be no larger than 10%.
 - Change in central value should be no larger than 50% of systemic uncertainty.
- Investigated a range of alternative models at different oscillation points.
 - Example: suppression in single pion channel seen in MINERvA results*.
 - No alternative model test failed the preset threshold for bias.

<u>*Phys. Rev. D 100, 072005 (2019)</u>

82 Nov 13th, 2024 Alexander Booth | RAL PPD Seminar Series

Mixing Angles: θ_{23}

83 Nov 13th, 2024 Alexander Booth | RAL PPD Seminar Series

CP Violation

• For both mass orderings: π

- $\delta_{CP} = \frac{\pi}{2}$ lies outside of the 3σ credible interval.

- In the Normal Ordering:
 - Broad range of permissible δ_{CP} values.
- In the Inverted Ordering:
 - CP conserving values $\delta_{CP}=0$ and $\delta_{CP}=\pi$ lie outside the 3σ credible interval.

