

Tracking at 40 MHz The CMS tracker and trigger upgrades for HL-LHC

Christopher Brown

RAL PPD Seminar 30/10/2024

Hardware

CMS & CMS Phase-2

Tracker

Trigger

Trigger

Track Finding

Triggering with Tracks

Physics

Parameter Residuals

Physics Reach

A Brief Introduction to CMS Track Finding

- Proton-proton at 40 MHz, thousands of charged particles in every single event
- Reconstruction of charged particle trajectories and vertices
- Need high granularity pixel detectors for vertex finding
- Radiation hard materials, 10-15 years between replacement
- Low material budget to reduce multiple scattering and electron bremsstrahlung
- Large magnetic fields, fitting curved particle trajectories

A Brief Introduction to Track Finding and Trigger Jargon

- Pileup simultaneous proton-proton interactions per bunch crossing, LHC currently ~60, rising to 200 in HL-LHC
- Pixel detector Silicon detector divided into micrometre pixels, innermost detectors, highest granularity
- Strip detector Silicon detectors with readout strips, good measurement in one direction only, cheaper, lower datarate
- Pseudorapidity (η) Angle from beamline, logarithmic
- p_T Transverse momentum, momentum in the r-φ plane
- Module Detector element containing the silicon sensor, readout electronics, power and other infrastructure
- Hit Single point of a particles' trajectory where it interacts with the detector
- Stub Small part of a particles' trajectory from two hits used to seed reconstruction

Hardware

A Brief Introduction to CMS

Outer Tracker

CMS Tracker – Phase 1

Outer Tracker

CMS Tracker – Phase 1

CMS Tracker – Phase 1

CMS Level-1 Trigger – Phase 1

CMS Trigger

2 – stage

Level-1 HW trigger, low granularity 4µs, 110 kHz rate, 99.7% rejection

Calorimeter Trigger

5 x 5 calorimeter super clusters
Jets and sums
Electron and photon isolation

Muon Trigger

Muon track reconstruction BDT for p_T regression

Global Trigger

128 different algorithms
Single bit output, keep or discard
Autoencoder anomaly detection

CMS Level-1 Trigger – Phase 1

CMS Trigger

2 – stage

Level-1 HW trigger, low granularity 4µs, 110 kHz rate, 99.7% rejection

Calorimeter Trigger

5 x 5 calorimeter super clusters
Jets and sums
Electron and photon isolation

Muon Trigger

Muon track reconstruction BDT for p_T regression

Global Trigger

128 different algorithms
Single bit output, keep or discard
Autoencoder anomaly detection

HL-LHC

~10 cm

- 3000-4000 fb⁻¹ over the HL-LHC lifetime
- Good for rare BSM physics searches and SM precision measurements
- Simultaneous proton-proton interactions per bunch crossing (pileup) rising to 200 at 40 MHz
- Current era CMS cannot cope without loss in physics performance
- Radiation damage too high for current CMS tracker and endcaps
- CMS needs to be upgraded and the Level-1 trigger is a major part of these upgrades

CMS Phase-2 Upgrade

Muon System

- New DT/CSC BE/FE electronics
- GEM/RPC coverage in 1.5<|η|<2.4
- Muon Tagging in 2.4 < |η| < 2.8

Barrel Calorimeter

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: New Backend electronics

HGCAL

- High-granularity calorimeter
- · Radiation-tolerant scintillator
- 3D capability and timing

Tracker

- Radiation tolerant, high granularity, low material budget
- Coverage up to |η|=3.8
- Track Finder @ L1 (|η|<2.4)

Trigger and DAQ

- Track-trigger at L1
- L1 rate ~ 750kHz
- HLT output ~ 7.5kHz

Brand new tracker
Brand new endcap calorimetery
Brand new muon system
Brand new timing layer
Brand new Level-1 Trigger
Basically a new detector

Coverage up to July 2.0

MIP TIMING DETECTOR Coverage eta < 3. Barrel: LYSO:CE crystals SiPM.

EndCap: Silicon Sensors (LGAP). Timing ~ 30-40ps

CMS Phase-2 Upgrade

Without tracking finding the rate would be 4 MHz to maintain the same physics selectivity

Level-1 Trigger

- $\sim 110 \text{ kHz} \rightarrow 750 \text{ kHz rate}$
- \sim 4 µs \rightarrow 12.5 µs latency
- Big FPGAs → flexibility
- Upgraded HGCal and Calorimeter backend electronics, high granularity at L1
- Tracks from outer tracker at L1, full 40 MHz readout
- Can perform PF and vertex finding for particle per pileup identification

CMS Phase-1 Tracker

CMS Phase-2 Tracker

CMS Phase-2 Tracker

Inner Tracker

3892 Modules, 1x2 or 2x2 readout chips

TBPX – Tracker Barrel PiXel 4 Layers

TFPX - Tracker Forward PiXel 8 small double disks

TEPX – Tracker Endcap PiXel 4 large double disks

Outer Tracker

Two types of module Pixel Strip (PS) and Two Strip (2S)

Tracker Barrel PS TBPS

Tracker Barrel 2S TB2S

Tracker Endcap Double Disks TEDD

Outer Tracker – p_T Modules

p_⊤ modules

- 2 closely spaced layers of silicon
- Tuneable window give on module p_T cut
- Both types of outer tracker module contain p_T modules
- Can't have stereo strips → but need precise z₀ coordinates so use pixel-strip modules
- Reduces data rate enough for track finding at 40 MHz
- 1 mm z₀ resolution allows a vertex to be found in 200 pileup

Tracker Upgrade

PS Modules

- One Pixel, one strip layer
- 1.47 mm long, 100 µm wide pixels give z₀ resolution for a track of 1 mm
- 100 µm pitch strip sensor
- Angled barrel region increases efficiency

Tracker Upgrade

2S Modules

- Two strip sensor layers
- 90 µm pitch
- High resolution in φ, poor resolution in z (η) in the barrel (endcap)
- Lower occupancy and bandwidth motivates their use in the outer layers

Readout System

Phase-2 trigger project

Trigger ATCA Boards

Apollo Board

Track finder processor
Inner tracker readout
Dual VU13P FPGAs, track finder algorithm split
between the two

Trigger ATCA Boards

Serenity S1 board

Reading out outer tracker stubs Level-1 trigger UK + KIT

APx board

Level-1 trigger Wisconsin Single VU13P FPGA
Onboard Zynq CPU
IPMC for board control
Firefly optics giving 63 Tb/s Input
> 250 boards in trigger system

Trigger ATCA Boards

5 4-Channel Fibre Optics

Apollo

DTH Ethernet Serenity Switch

DTH - CMS DAQ and TCDS Hub providing common clock for boards
Ethernet switch for rack management
Online software for board control and monitoring

Trigger

Upgraded tracker for Track finding at 40 MHz

Track finding constraints

200 PU at 40 MHz processing

5 µs to receive data and produce tracks

Need to be able to reconstruct a vertex

Need to be able to pass **tracks to downstream algorithms** e.g. particle flow

Upgraded tracker for Track finding at 40 MHz

Track finding musts

200 PU at 40 MHz processing

- Highly parallelised algorithm, time and space

5 µs to receive data and produce tracks

- 1 µs stub processing, 4 µs track finding

Need to be able to reconstruct a vertex

- 1 mm track resolution in z₀

Need to be able to pass tracks to downstream algorithms e.g. particle flow

- well reconstructed p_T , η , φ , z_0 , quality variables

Upgraded tracker for Track finding at 40 MHz

Track finding wants

High and flat efficiency for tracks across $|\eta| < 2.4$

Low fake rate (tracks not matched to real particles)

Robust to breaking detector

Displaced track finding

Hybrid Algorithm

Reconstruct all tracks $p_T > 2$ GeV, $|\eta| < 2.4$ 4 μs to process over 10,000 stubs and form o (100) prompt tracks per event

Hybrid algorithm

- 1. Road search algorithm based on tracklet seeds
- 2. Kalman filter for identify best stub candidates and track parameters
- 3. Boosted decision tree to evaluate track quality

Step 1

- Use two stub seeds to create initial tracklets
- 8 different combinations of barrel and endcap layers

Step 2

- Project track candidates outwards/inwards
- Based on a beamspot constraint
- Create a search window for more stubs

Step 1

- Use two stub seeds to create initial tracklets
- 8 different combinations of barrel and endcap layers

Step 2

- Project track candidates outwards/inwards
- Based on a beamspot constraint
- Create a search window for more stubs

Step 3

- Add matching stubs to track candidate
- Smallest residual stub is kept
- Minimum 4 stubs, maximum 6 stubs for a track

Step 4

 Pass track candidates downstream to track merger and Kalman Filter

Step 3

- Add matching stubs to track candidate
- Smallest residual stub is kept
- Minimum 4 stubs, maximum 6 stubs for a track

Step 1

- Use two stub seeds to create initial tracklets
- 8 different combinations of barrel and endcap layers

Step 2

- Project track candidates outwards/inwards
- Based on a beamspot constraint
- Create a search window for more stubs

Hybrid Algorithm – Kalman Filter

- Takes track candidates and track residuals to form Kalman filter state and covariance matrix respectively
- Stubs are iteratively added a layer at a time in a state propagation and state update
- State propagation estimates the track in the next layer
- State update uses the recorded stubs and their uncertainties to improve the track state, removing any tracks with incompatible stubs
- Track fit iteratively improves as stubs are added

Hybrid Algorithm - Performance

Transition regions see fewer layers crossed so slight dip in efficiency at $\eta = 1$

1 mm z_0 resolution for tracks \rightarrow good enough for vertex association in 200 PU Worse resolution in η because of barrel geometry

Hybrid Algorithm – Track Quality

- High fake rate → tracks not coming from genuine charged particles
- Issue for algorithms such as E_T^{miss} where single high p_T tracks can reduce efficiency
- Kalman Filter calculated χ^2 fit parameters
- Can use these to reduce fake tracks → handle for downstream algorithms

Hybrid Algorithm – Track Quality

- Complex dependence of χ^2 in different η and z_0 regions
- Single cut on χ^2 cannot account for these interdependencies
- Simple boosted decision tree (60 trees, 3 deep) can improve identification
- Can be retrained and tuned as track finding evolves
- Single value for downstream users

Tracks in the L1 trigger

Global Track Trigger

- Event level quantities
- Vertex Finding
- Track-based E_Tmiss
- Track-based Jets
- Exotic decays e.g. $W\rightarrow 3\pi$

Global Track Trigger

- Event level quantities
- Vertex Finding
- Track-based E_T^{miss}
- Track-based Jets
- Exotic decays e.g. $W\rightarrow 3\pi$

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

End-to-end Neural Network

DNN learnt weighted histogram

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

End-to-end Neural Network

DNN learnt weighted histogram

3-bin 1D CNN

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

End-to-end Neural Network

DNN learnt weighted histogram

3-bin 1D CNN

z₀ peak finder

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

End-to-end Neural Network

DNN learnt weighted histogram

3-bin 1D CNN

z₀ peak finder

DNN for classifying PV tracks

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

Baseline

p_T weighted histogram

3-bin sliding window sum

z₀ peak finder

z₀ window track-to-vertex association

Better

Track to Vertex Association True Positive Rate

Tracks in the L1 trigger

Muon Trigger

- Link track and muon objects based on η φ cuts
- Sharper turn ons, higher efficiency
- Lower rate, higher purity
- Also match muon stubs to tracks needed for overlap regions

Tracks in the L1 trigger

Correlator Trigger

- 2 layers
- First layer performs particle flow and pile up per particle identification (PUPPI)
- Linking objects from multiple subsystems
- Use vertex to weight PF candidates as coming from primary vertex or PU
- Reduces number of candidates in downstream algorithms
- Reduces impact of high PU on downstream algorithms
- Track matched electron ID, BDT boosts performance

Step 2

Correlator Trigger

- Second layer performs jet reconstruction, E_T^{miss} calculations, e/γ isolation, τ tagging
- Better reconstruction due to PUPPI
- Objects to trigger on sent to global trigger
- Time to do complex jet tagging using neural networks

Jet Tagging

- Useful to understand jet origin
- Downstream global trigger can have event type specific taggers
- B-jet taggers obvious starting point
- Tau taggers also implemented
- Future:
 - Single deepset model
 - Multijet classifiers
 - Regress jet p_T

Set or disconnected graph

$$X = \{x_1, \dots, x_M\}, x_m \in \mathfrak{X}$$

Physics

Upgraded Tracker for Physics

Higher granularity in pixels means better two track separation Better efficiency in jets

57

Upgraded Tracker for Physics

Higher granularity in pixels means better resolution in track parameters
Increased η coverage

Upgraded Tracker for Physics

b-jet efficiency remains high across different PU scenarios

Drops off at high η, but

Phase-1 didn't have these lines at all

Upgraded Trigger for Physics

VBF reconstruction efficiency increased versus Phase-1, at least as good at 140 PU in barrel region

Tracker complements HGCAL VBF reconstruction

Upgraded Trigger for Physics

Higgs precision era of LHC
Di-higgs observation should be possible with full HL-LHC dataset, ATLAS +
CMS

Conclusion

Upgrading the tracker is essential for the CMS HL-LHC upgrade

Tracking at Level-1 trigger algorithm nearing completion

Particle Flow and PUPPI possible at Level-1

New ML techniques used to boost performance

Up to the physicists to start thinking of what analyses and measurements we can make

Backup

Inner Tracker Modules

3D pixels inner most layer, lower leakage current so can maintain performance after large radiation doses

- Replaceable

Planar sensors for the rest

CROC Readout chip codeveloped with ATLAS in the RD53 collaboration

-35 °C operating temperature

> 98% hit efficiency, < 1 % pixel noise

Planar

3D

c.brown19@imperial.ac.uk

Inner Tracker Modules

3D pixels inner most layer, lower leakage current so can maintain performance after large radiation doses

- Replaceable

Planar sensors for the rest

CROC Readout chip codeveloped with ATLAS in the RD53 collaboration

-35 °C operating temperature

> 98% hit efficiency, < 1 % pixel noise

TBPX 2x2 module in FNAL testbeam

c.brown19@imperial.ac.uk

1: PS-s sensor

2: PS-p sensor 3: Macro-pixel ASICs

PS Module

Optics on module

Low power Gigabit Transceiver (LpGBT)

Strip sensor

CFRP support

Spacer

Spacer

MPAs

CFRP support

CIC

Baseplate

Flexible hybrid

Both sensors wire-bonded to same hybrid needed for sensor-sensor communication

PS Module

- 5616 PS Modules needed
- Assembly process well defined
- Difficult to align top and bottom modules with precise spacing
- Multiple days per module assembly
- Pre-production 2024
- Tests ongoing with preliminary noise results within expectation
- Testing down to -35°C

c.brown19@imperial.ac.uk

2S Module

2S Module

- 7680 2S Modules needed
- Difficult to create folded over hybrid
- Assembly process being defined
- Multiple days per module assembly
- Preproduction 2024

c.brown19@imperial.ac.uk

Tracks for Level-1 → System Overview

