

A new dimension for ATLAS: A High-Granularity Timing Detector

Stefan Guindon (CERN)

RAL PPD Seminar October 23rd, 2024 RAL

Overview

- LHC and the HL-LHC
- Upgrades to the ATLAS detector
- High Granularity Timing Detector
 - Motivation and Performance
- Low Gain Avalanche Detectors (LGADs)
 - Technology and current performance
 - Challenges and progress
- Design of the HGTD modules and layout
- Conclusions and outlook

The LHC

CERN Prévessin

ATL/

• Large Hadron Collider (LHC)

CMS

- Swiss / French border (outside of Geneva)
- Proton proton collider 27 km circumference

Centre-of-mass energies (\sqrt{s}) = 7-14 TeV

- Instantaneous luminosity up to 2 x 10³⁴cm⁻²s⁻¹
- Proton bunch spacing of 25 ns
- 4 main experiments: ATLAS, CMS, ALICE, LHCb

LHC 27 m

ALICE

LHC and ATLAS

- LHC collides 'bunches' of protons:
 - ~ 10¹¹ protons per bunch
- Bunches cross every 25ns

LHC and ATLAS

- LHC collides 'bunches' of protons:
 - ~ 10¹¹ protons per bunch
- Bunches cross every 25ns
- The centre-of-mass energy of the collisions:

• Increase in number of interactions per bunch crossing $<\mu> \sim 51$ in 2023

Bunch

Implications of the HL-LHC on ATLAS

- The HL-LHC is the world's flagship particle physics project during the next decades
- High Luminosity LHC: 2030 to 2042
 - Deliver up to 4000 fb⁻¹ integrated luminosity at 14 TeV
- To do this, increase in instantaneous luminosities:
 - Instantaneous luminosities up to L \approx 7.5×10³⁴ cm⁻² s⁻¹ (Run 2 ~ 2x10³⁴)
- Resulting impact of the conditions:
 - Pile-up $<\mu$ > = 200 interactions per bunch crossing (Run 2 ~ 34)

Challenges of HL-LHC Data-taking

- Z-> $\mu\mu$ candidate event with 65 additional reconstructed vertices from other interactions ($\mu \sim 90$)
- Average number of interactions per bunch crossing for 2023: $< \mu > ~ 51$
- Instantaneous Luminosity:
 - Challenges to online and offline detector performance

Mean Number of Interactions per Crossing

HL-LHC Challenges

- Why do we want $<\mu> \sim 200$?
- The HL-LHC promises 20 times today's dataset
 - 400 million Higgs bosons will be produced
- It would take us decades longer of running to reach the same size dataset
- What does <µ> ~ 200 mean in terms of a detector requirement in HL-LHC in maintaining similar performance:
 - Larger event sizes —> more collisions per bunch crossing, many more tracks, ...
 - Higher detector occupancy —> need a detector with higher granularity
 - Higher trigger rates —> re-design of our trigger architecture and readout system
 - Increasing reconstruction complexity —> Run more complex software online
 - **High radiation environment** —> need silicon with higher tolerances
- Requires the re-design of our current detector (or at least large parts of it) for our ATLAS HL-LHC physics programme

Upgraded ATLAS detector

 Major upgrades to the detector to achieve physics goals of HL-LHC

Trigger + DAQ Upgrade for higher rates 44m Electronics upgrades Additional 25m muon coverage **Tile calorimeters** LAr hadronic end-cap and forward calorimeters **Pixel detector** LAr electromagnetic calorimeters Toroid magnets Transition radiation tracker Solenoid magnet Muon chambers Semiconductor tracker

Fully silicon Inner Tracker (ITk) Coverage up to |η| = 4.0

HGTD silicon timing detector
Coverage from 2.4 < |η| < 4.0

Oct 23, 2024

Stefan Guindon, CERN

HGTD: ATLAS Phase-II Detector

Upgraded Inner Tracker of ATLAS (ITk)

• HL-LHC: Increased particle densities and radiation damage

Tracking in the HL-LHC

- Resolution in longitudinal direction (z) reduced in forward regions
 - Pile-up density (~1.6 vertices / mm) > z₀ resolution in forward regions
- Ambiguities in track-to-vertex information —> multiple tracks in the forward region can be associated to a given reconstructed vertex

- Physics and object performance reduced
 - Particularly in signatures with final state signals with $|\eta| > 2.4$

Using the time dimension

• Beamspot (luminous collisions) is spread in longitudinal direction and time

- Measure time of a track to improve track-to-vertex association for tracks $|\eta| > 2.4$
- Vertices have time spread of ~ 180 ps
- With 30 ps resolution for reconstructed tracks
 - Additional ~x6 pileup rejection
- Associate time to track using HGTD:
 - Reduce tracks in hard scatter (HS) jets from pile-up (PU) vertices
 - Reduce jets from pile-up vertices and stochastic jets

HGTD: High Granularity Timing Detector

- Active silicon area coverage: 2.4 < Inl < 4.0
- Both endcap regions outside of ITk
- Per track timing resolution of 30 ps 50 ps up to a fluence 2.5 x 10^{15} n_{eq}/cm²
- LGAD (Low Gain avalanche Detectors) of 50 μ m thickness with pad size: 1.3 x 1.3 mm²
- Sensors will be operated at -30 C
 - CO₂ dual-phase cooling system

Global view of HGTD

- Detector to be installed on each of two calorimeter extended barrels
- Two instrumented double. sided layers (mounted in 2 cooling disks)
 - Rotated by 15° with respect to one another

• Overlap between modules on inner, middle and outer ring

Stefan Guindon, CERN

Oct 23, 2024

Sensor and ASIC: HGTD Module

• HGTD *hybrid* modules:

LGADs

- <u>G. Pellegrini et al., NIM A765 (2014) 12</u>
- H. Sadrozinski et al., arXiv:1704:08666

- Low Gain Avalanche Detectors (LGAD)
 - Developed by CNM Barcelona and CERN RD50 collaboration

- Standard segmented N-in-P silicon detector with built-in p multiplication layer
- Results in high E field, avalanche region
- Moderate gain ~ 10 20 —> higher S/N
- Multiplication layer allows thinner detectors (35-50µm)
 - Fast charge collection (~1 ns)
 - Small rise time (~400 ps)

Excellent time resolution < 30 ps pre-irradiation

Stefan Guindon, CERN

HGTD: ATLAS Phase-II Detector

ALTIROC ASIC

- ALTIROC: ATLAS LGAD Timing Integrated ReadOut Chip
- Have to withstand high radiation levels
 - 2.0 MGy at the edge of non-replacing ring
- Each single readout channel needs to fit within the sensor pad
- Preamplifier and a discriminator to capture LGAD signal
- Provide **TOA and TOT** for timewalk correction (Vernier TDCs for timing)
- Timing data and hit flag stored in **local registers**
- Local data aggregated column wise and sent until *L0 Accept* with a latency up to 35 µs
- Provide luminosity in hits per ASIC per bunch crossing

- Provide strict jitter requirements < 25ps @ 10fC / 65ps@4fC
- Discriminator threshold minimum of 2fC

ALTIROC2: first full-sized prototype

Time to Digital Converter (TDC) for TOA

• Vernier delay configuration with two delay lines:

- Time resolution of 20ps: difference between delay of cells in each slow and fast line
- Time measurement can be made over 2.5 ns window centred on bunch crossing
- Time of Arrival (TOA) given by bin where STOP signal passes the START

• Timing ASICs require a high power consumption ~ 300 mW / cm²

- Strict requirements on CO₂ dual phase cooling ~ ASIC power 4 times the LGAD sensors
- No power used for TDC in case a signal is not detected

Luminosity

- Occupancy will be linearly correlated with the number of interactions
- Sum the hits over each region to reach a sufficient statistical accuracy to provide an online measurement

• Information sent at 40 MHz:

• Every bunch crossing independent of the ATLAS L0 Accept

Luminosity uncertainty one of the leading uncertainties in precision measurements

HGTD: ATLAS Phase-II Detector

 $\sigma_{total}^2 = \sigma_{Landau}^2 + \sigma_{jitter}^2 + \sigma_{timewalk}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2$

Sensor

 σ_{Landau}^2 • Landau fluctuations from deposited charge as charged particle traverses the sensor: < 25 ps pre-irradiation: thin sensors

Simulation of signals in 50-um LGAD

N. Cartiglia PSD 12

Sensor + ASIC

Figures taken from 1704.08666

Largest components from jitter (total target < 25 ps)

ASIC + Readout

$$\sigma_{total}^{2} = \sigma_{Landau}^{2} + \sigma_{jitter}^{2} + \sigma_{timewalk}^{2} + \sigma_{TDC}^{2} + \sigma_{clock}^{2}$$

 σ^2_{Landau}

$$\sigma_{jitter}^{2} = \left(\frac{t_{rise}}{S/N}\right)^{2}$$

$$\sigma_{timewalk}^{2} = \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^{2}$$
• TDC granularity
• Clock distribution: < 10 ps

DRD7 meeting

Stefan Guindon, CERN

HGTD: ATLAS Phase-II Detector

LGAD R&D for hybrid detector

- HGTD modules are hybrid silicon detectors
 - LGAD bump-bonded to an ASIC

Jitter of a preamplifier:

LGAD R&D for hybrid detector

• HGTD modules are hybrid silicon detectors

• LGAD bump-bonded to an ASIC

Jitter of a preamplifier:

• Thickness of LGADs

- Tested LGADs down to ~ 35 μm active Si:
- Smaller rise time, faster signal, less impact due to Landau fluctuations
- Smaller bias voltages —> less power required (better for cooling)
- Large capacitance with thinner sensors $(C_d) \longrightarrow ~50 \text{ um} = 4 \text{ pF}$

• Depth and design of multiplication layer

- Gain limitations due to noise (< 100)
- Gain layer depth (up to 2.5 μ m)
- Implant width (up to 1-2 μm)
- Different materials —> Boron or Gallium
- Additional impurities —> Carbon

Time resolution < 70 ps Collected Charge > 2.5 fC

Radiation damage

- Occupancy < 10 % even in the innermost part of the detector + position resolution
 - Size of the sensing element 1.3x1.3 mm²
- Sensors will be operated at -30°C to mitigate impact
 - CO₂ cooling
- Radiation damage is a main concern
 - $6 \times 10^{15} n_{eq}/cm^2$ and > 3 MGy

Radiation damage

CERN F

- Occupancy < 10 % even in the innermost part of the detector + position resolution
 - Size of the sensing element 1.3x1.3 mm²
- Sensors will be operated at -30°C to mitigate impact
 - CO₂ cooling
- Radiation damage is a main concern
 - $6 \times 10^{15} n_{eq}/cm^2$ and > 3 MGy
- Replacement of inner most part of sensors to keep good performance (every 1000 fb⁻¹)
 - Maximum fluence of 2.5×10¹⁵ n_{eq}/cm² and 2 MGy

Radius [cm]

Simulation of HGTD

• QCD dijet event showing HGTD hits and trajectories of charged particles

Stefan Guindon, CERN

HGTD: ATLAS Phase-II Detector

LGAD radiation studies

- Sensor irradiated campaigns:
 - Neutrons at IJS (Ljubljana)
 - Protons at PS-IRRAD (CERN)
- Up to fluences of 6 \times 10¹⁵ n_{eq}/cm^2
- Bias voltage increase recovers Gain loss due to higher fluences

Stefan Guindon, CERN

• Higher fluences result in losses of efficiency for a certain charge

Radiation hardness of LGADs

- With irradiation (fluence > 1.5e15 n_{eq}/cm²): the effective doping in the gain layer is significantly reduced
 - Due to the 'acceptor removal' process —> loss of free carrier concentration in p-type silicon
- LGAD gain layer reduction with radiation damage

 Studies of different gain layer designs, doping materials and C-enriched substrates

CERN

• Least loss in gain from Boron + Carbon

G. Paternoster, TREDI 2019

Acceptor removal

- Quantify the acceptor removal coefficient (c-factor) from Capacitance-Voltage (CV) measurements
 - Identify the gain layer depletion voltages (V $_{gl}$) before and after irradiation

$$V_{GL,\Phi_{eq}} = V_{GL,0} \exp(-c \cdot \Phi_{eq})$$

• Optimization of dopants, depth, concentration of gain layers from various vendors and runs

• Carbon enriched wafers achieve lowest acceptor removal coefficient

Extensive R&D for ATLAS + CMS

LGAD studies

• R&D phase over several years of LGAD testing in lab and testbeam

- Tests of radiation-hardness up to maximum fluence:
 - Use of different designs and doping materials
 - Carbon implanted gain layers
- Carbon implanted gain layers reduce impact of irradiation
 - Larger charge collection at similar bias voltages
- Optimization of carbon enrichment dose and diffusion techniques to target acceptor removal coefficient

800

Efficiency [%]

Single Event Burnout (SEB)

- CERN S
- During testbeam campaigns in 2017, 2018, and 2019 several sensors lost
 - All with fluences above $1.5 \times 10^{15} n_{eq}/cm^2$
- No incidents in lab testing (laser or Sr90)
- Many testbeams trying to capture event

Single Event Burnout (SEB)

- During testbeam campaigns in 2017, 2018, and 2019 several sensors lost
 - All with fluences above 1.5x10¹⁵ neq/cm²
- No incidents in lab testing (laser or Sr90)
- Many testbeams trying to capture event

ATLAS HGTD Preliminary

- A single beam particle was found to be responsible for the fatality
- Field collapse in the presence of high concentration of free carriers is the probable cause
 - Irreversible breakdown at high voltages

https://iopscience.iop.org/article/10.1088/1748-0221/18/07/P07030/pdf

Defining safe operation

- 2020 and 2021 campaigns at DESY to quantify this issue
 - Detailed collaboration with vendors, RD50 and CMS ETL
- Able to determine a safe operating operating zone dependent on thickness

 Apply voltage < 550 V for a 50 μm sensor

• Additional constraint for HGTD

LGAD performance in lab

- Lab measurements using Sr90 source
 - Collected charge (> 4 fC) and time resolution (< 70 ps) criteria met
 - Many sensors need to be pushed **beyond safe limits** to achieve performance necessary for HGTD
- Focus on verifying carbon implanted sensors can meet HGTD criteria
 - Reduce the required bias voltage to achieve similar performance (lower V_{bias} with same thickness)

Test beam performance

• Boron + Carbon gain layers meet all requirements of the LGAD sensors at highest fluence

HGTD will use only carbon implanted LGAD sensors from IME

HGTD large scale testing

- Testing of full sized objects on-going towards production
- Hybridization and module assembly testing
 - Source scan after thermal cycling

ATL-COM-HGTD-2024-005

• Module gluing and loading onto detector units

- - Full scale read-out tests using the demonstrator at CERN

 Peripheral electronics board testing

HGTD: ATLAS Phase-II Detector

Challenges and Potential: Vertex to determination

- Challenges of HGTD: No coverage in central region of detector
 - Very difficult to associate time to hard scatter vertex

• R&D: Use Machine Learning technique to determine HS vertex time (t₀)

- Kalman filter for track extrapolation
- Collect all tracks spatially compatible (in Δz) with selected PV
- Cluster them using their measured times

Roadmap

- The HGTD will mitigate pile-up effects and improve object/physics performance and provide a luminosity measurement for ATLAS
- Intense R&D program on LGAD sensors over the last 5+ years
 - Single-pad / 5x5 and 15x15 arrays tested in lab and testbeam
 - During the last years we have profited from a very open and fruitful collaboration with RD50 and CMS colleagues
- < 50 ps per hit achievable up to 2.5 x 10¹⁵ neq/cm² with 50 μ m thin LGAD sensors
- HGTD is moving into the full scale system tests and production phase
 - Exciting and challenging project for ATLAS
- Silicon timing is a very active area of detector R&D for HL-LHC and beyond
 - Many areas of research continues

Additional Slides

Data Recorded at ATLAS

ATLAS detector

Motivation for HL-LHC

• Fully exploit the physics potential of the HL-LHC:

ATLAS Preliminary

 $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$

Non-resonant HH

---- bbτ+τ-

Combined

🗕 – bbγγ

Asimov data ($\kappa_{\lambda} = 1$)

Baseline

- Extensive tests of SM at the TeV scale
 - Precise measurements of Higgs couplings, including self-coupling
 - Precision SM measurements
- Searches for new physics

20

17.5

15

12.5

10

7.5

5ł

2.5

-2Δln(L)

• Higgs as a portal to the dark sector

3

0.02

0.04

0.06

0.08

0.1

Expected uncertainty

Total

Theory

 κ_{γ}

 κ_W

 κ_{Z}

κ_q

κ

 κ_{b}

 κ_{τ}

κμ

 $\kappa_{Z\gamma}$

0

2 σ

1 σ

8

Kλ

Statistical

Experimental

Snowmass White Paper

Uncertainty [%]

Tot Stat Exp Th

1.8 0.8 1.0 1.3

1.7 0.8 0.7 1.3

1.5 0.7 0.6 1.2

2.5 0.9 0.8 2.1

3.4 0.9 1.1 3.1

3.7 1.3 1.3 3.2

1.9 0.9 0.8 1.5

4.3 3.8 1.0 1.7

9.8 7.2 1.7 6.4

0.12

0.14

 $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1} \text{ per experiment}$

HL-LHC Projection

ATLAS and CMS

Testbeam Setup

- DUTs: LGADs sitting inside a cooling box
- SiPMs: for timing reference which sit in a separate cooling box (closed to light)

(a) Sensors under test

- Mimosa planes: Telescope used for tracking position / efficiency
- Fel4 + Scintillator: used for triggering
- Trigger Logic unit receives signal from FE-I4 and scintillator and sends signal to oscilloscope and NI-crate to save data

LGAD Sensor Studies

- Several on-going LGAD R&D studies at various HGTD Institutes:
 - Laboratory testing (IV,CV)
 - Laboratory dynamic testing (β,α,laser)
 - Testbeams with pions or electrons
- Time resolution analysis
 - Measure spread of ToA with well known devices (LGAD / SiPMs)
 - Time walk corrected via amplitude/ToT correction or Constant Fraction Discrimination

LGAD Technology

CERN S

• Up to 8" wafers in production

- 35 and 50 μm active thickness on substrate (50 μm default for HGTD)
- Tested B and Ga for highly doped multiplication layer
 - Carbon for improved radiation hardness
- Junction Termination Extension (JTE) on all sensors
 - Controls E-field against early breakdown
 - No multiplication layer between pads

G. Pellegrini et al., Status of LGAD production at CNM, 30th RD50 Workshop, Krakow, Poland, 2017

HGTD: ATLAS Phase-II Detector

LGAD Requirements for HGTD

- Testing various LGAD vendors: IHEP-IME, USTC-IME, CNM, FBK, HPK
 - Different doping materials, substrates, thickness

• Requirements on LGAD sensors:

- Detector can withstand the lifetime of the HL-LHC running:
 - Maximum fluence: 2.5×10¹⁵ neq/cm² and TID: 2 MGy at the end of HL-LHC (4000 fb⁻¹)
- Average time resolution: 35 ps (start), 70 ps (end) per hit / 30 ps (start), 50 ps (end) per track
- Collected charge per hit > 4 fC
- Hit efficiencies of 97% (95%) at the start (end) of their lifetime

IHEP-IME

FBK-UFSD 3.2 (2020)

- Full-sized sensor composed of 15x15 pads
- Extensive R&D in lab and test beams
- Focus on more radiation hard performance

Stefan Guindon, CERN

HGTD: ATLAS Phase-II Detector

Full-sized Sensor Tests

• Study of performance full-sized LGADs (15x15) from various vendors

- The production of uniform gain layer on large devices has been shown for several vendors
- $\bullet~V_{gl}$ and $V_{foot}\,studies$

HGTD: ATLAS Phase-II Detector

Sensor studies: doping

 Gain and charge as a function of bias voltage for a CNM LGAD with different doping doses of the multiplication layer.

- CNM single-pad sensors and arrays
 - With and without JTE
 - Medium and high doping

• Time resolution of sensor of 30 ps achievable

Stefan Guindon, CERN

Sensor studies: doping

- Different doping profiles: Boron, Carbon, and Gallium
 - Fluences up to 3 x 10¹⁵ neq/cm²
- Boron and Boron+Carbon showing the best performance
 - Gallium also contains a very high leakage current —> higher power

Sensor studies: time resolution

- Time resolution as a function of neutron fluence
 - HPK 50D at breakdown (VBD) and with headroom (VHR) at -20 °C
 - Headroom defined to be ~ 10 % or more below breakdown
 - HPK B35 at VBD
- Time resolution found to be 20 ps before irradiation and 50 ps at 6 x 10^{15} n_{eq}/cm²

Sensor studies: bias voltage vs radius

Stefan Guindon, CERN

• Given the fluence vs. R dependency:

- Bias voltage of sensors will need to be adjusted during detector lifetime
- Required bias voltage vs. fluence for different fluence levels at R = 300 mm
- A rapid increase is seen between:
 - 1 x 10¹⁴ and 3 × 10¹⁴ n_{eq}/cm^2

- Increase bias voltage over lifetime of detector and as a function of R
- Also include replacement of inner section

Sensor studies: bias voltage vs radius

• Given the fluence vs. R dependency:

- Bias voltage of sensors will need to be adjusted during detector lifetime
- Power density increased with higher fluence

Annealing studies: initial studies

• No significant differences in annealing performance

Stefan Guindon, CERN

 Studies continue on inter-pad gap, B+C dopants, deeper multiplication layer

HGTD: ATLAS Phase-II Detector

CERN

Arrays: efficiencies vs threshold

- Signal amplitude for un-irradiated and irradiated 6 × 10^{14} n_{eq}/cm²
 - Signal amplitude is reduced after irradiation
- Signal efficiency vs the amplitude threshold
 - Efficiency drops much quicker for irradiated LGAD with higher threshold

 Hit efficiency as a function of collected charge at a noise occupancy of 0.1 % and 0.01%

HGTD Test beam Sep. 2017

Unirradiated, 120 V, 20°C

6×10¹⁴ n_{eo}/cm², 250 V, -21°C

Sensor + ASIC: Jitter

Collected Charge [fC]

HGTD: ATLAS Phase-II Detector

Sensor studies: charge and time

• Collected charge and time resolution for HPK 50 μm at -30 C

- CC of 1 fC for all fluences, 2.5 fC up to 3 x 10¹⁵ n_{eq}/cm²
- 50 ps achievable up to 3 x 10^{15} n_{eq}/cm² with 2.5 fC collected charge

Arrays: 15 x 15 pads

- Studies of 15 x 15 LGAD arrays on-going (half-size of final sensor)
- Microscope photo of an HPK-ATLAS Type 3.1 15×15 array.

							Mangura Ra	cult				
							Main Ar	ea 🗹 Enlarg	ge Save as C	sv		
	J						No.	Measure 2 Points	Result	1.27 mm		
		-	L	-	-		2	2 Points		1.27 mm		
			-	=	-	-	-	-	-	-	-	
В												
			-	-	-			-	-	-	-	
				4	4							
		-								-		
		-		•	-	-	-	-				
	•	,		+					•	•	•	
			and the second						-			
		-	-	-				-	-	-	-	
	٠	•			•	•	•	•				
		-	-	-	-		-	-	-	-	-	
			•									
		-	-	-			-	-	-	-	-	
					Section 1							
	5			•	•							
-	-											

• V_{BD} map of a 15 × 15 HPK type 3.1 array

- Measurement at room temperature
- Neighbours and GR floating
- Excellent uniformity observed
- Feasibility of large-size LGAD arrays demonstrated

HGTD: ATLAS Phase-II Detector

Arrays: efficiencies and time resolution

• Hit efficiency (left)

- Time resolution (right)
 - Top: Un-irradiated
 - Bottom: $6 \times 10^{14} n_{eq}/cm^2$

- Efficiency ~ 100 %
 - Inter-pad gap slightly more efficient after irradiation
 - Voltage threshold is 3 times larger than the noise (~5mV)

Mechanics and Assembly

- Detector mechanics and infrastructure were designed taking into account the severe constrains of space to accommodate the detector
 - Services need to be routed in the gap between the barrel and end-cap calorimeters, sharing the space with ITk
- HGTD hermetic vessel made of carbon fibre composite sandwich structure

- Temperature inside vessel: -35C.
- To avoid condensation, heaters will be placed on HGTD cover and LAr cryostat wall

Services routed along the end-cap calorimeter face

Challenges and Potential: High precision timing

- Associating the correct time to all hits/tracks in a given event
- Contributions from time of flight of particles and from collision time offset from the LHC
- Calibrations needed to correct for short and long variations

- Global sketch of the the full HGTD system with LHC clock distribution to each pixel block
- Contributions will need to be very well understood and calibrated

Stefan Guindon, CERN

Object Performance

- Track candidates from ITk are extended to HGTD using a progressive Kalman filter
 - Extrapolation resolution when using last silicon hit < 1 mm
- Improved performance of objects beyond ITk-only scenario
 - Pileup jet rejection
 - b-tagging and light-jet rejection
 - Lepton isolation

Stefan Guindon, CERN

CERN S