# ACPA@ELI

## FROM NUCLEI TO THE COSMOS WITH BRILLIANT GAMMA BEAMS





CHRISTIAN AA. DIGET UNIVERSITY OF YORK

WARWICK MEETING 6-7TH JANUARY 2020



#### From Nuclei to the Cosmos with Brilliant Gamma Beams

- How and where were the elements, we are made of, created?
  - Big Bang Nucleosynthesis Flagship experiment for ELI-NP: <sup>7</sup>Li(γ,t)α
  - The p-process in hot stellar environments (e.g. supernovae)
  - The r-process in neutron-star neutron-star mergers
- How does the collective dynamics of nuclei drive reactions?
  - The dynamics of fission processes
  - Collective shapes in p-process transition metals as well as rare-earth isotopes
  - Clustering in light nuclei
- And how can we use this understanding to improve our welfare?
  - Unique opportunities for production of new medical isotopes
  - Improved nuclear data for security and radiation control





### Down-to-Earth Nuclear Physics with Brilliant $\gamma$ -beams

#### ELI-NP (Romania), Electron Linac Compton Back-scatter (0.2-20 MeV)

- Intense γ-beams at ELI-NP:
  - Pure, fully polarised, EM-probe
  - Narrow-bandwidth selectivity
  - γ-induced breakup/emission/fission
  - Time-reverse capture



As part of the flagship Extreme Light Infrastructure









H.R. Weller et al., Prog. Part. Nucl. Phys. 62 (2009) 257

## The ELI-NP Gamma Beam Facility — Plans and Status

#### • New ELI-NP VEGA Gamma-Beam System:

- New GBF contract signed (4th Oct 2019, VEGA System, USA)
- ELI–NP VEGA GBF commissioning: 2022–2023, with high–priority ACPA physics
- The VEGA system is practice a continuous beam (30MHz structure), such that the instantaneous rate is down by 4 orders of magnitude compared to previous GBS.
- Comparison of ELI-NP GBF and HIγS (USA) γ-beam specifications, where Sensitivity scales with Spectral Density, offering unique opportunities:
  - Investigation of weak structures or low-cross section (astrophysical) reactions
  - Gamma-ray induced reactions on thin targets opening up for studies of extremely rare elements, including long-lived radioactive isotopes

| Parameter [units]            | ELI-NP                  | HIγS                    |
|------------------------------|-------------------------|-------------------------|
| Photon energy [MeV]          | 0.2-20                  | 2.0-100                 |
| Bandwidth [relative]         | < 0.5%                  | 5%                      |
| photons/sec (FWHM bandwidth) | 2.0-8.0*10 <sup>8</sup> | 0.1-2.0*10 <sup>8</sup> |
| Spectral density [ph/s/eV]   | > 104                   | > 10 <sup>2</sup>       |
| Linear polarization          | > 95 %                  | (circular)              |

## Charged-particle detector array ACPA at ELI-NP

- Dual-layer Silicon dE-E telescope array
  - Low-threshold silicon: 100um double-sided readout silicon
  - Maximal-absorption silicon layer: 1500um double-sided Si
  - Known technology: 3-inch wafer nTD silicon technology
- ACPA@ELI electron vs light-ion discrimination:
  - e- signals are distributed, i.e. punch-through equivalent (existing electron response simulations)
  - Aiming for p vs e- Particle Identification (PID) at 300 keV
  - Implementation and bench-marking of Rise-time and max-current based algorithms
  - Coupling to external detector arrays:
  - External γ-ray and neutron scintillator arrays (ELIGANT-GN)

<u>ACPA @ ELI-NP</u>

Aa. Diget

• External HPGe γ-ray array (ELIADE).

# First ACPA-collaboration experiment at HI $\gamma$ S: <sup>7</sup>Li( $\gamma$ ,t) $\alpha$

#### High Intensity *γ*-ray Source facility:

- Unique selectivity full kinematics coincidence measurements
- Addressing the "Lithium problem" in Big-Bang Nucleosynthesis
- Segmented silicon array (SIDAR) for first measurement of  $^7\text{Li}(\gamma,t)\alpha$
- Electron background assessment, light ion PID from kinematics
- ELI-NP (ELISSA and ACPA@ELI collaborations), York, Aarhus (Denmark), HIγS and ORNL (USA)





CMB Image Credits: Nine Year Microwave Sky, NASA / WMAP Team Munch et al., PRC Submitted 2019, First Measurement of the  $7Li(\gamma,t)$ 4He Ground-state Cross Section Between E $\gamma = 4.4$  and 10 MeV



Upstream energy [keV]

### Unique opportunities with ACPA@ELI

• Charged-particle detector-array with **low-energy sensitivity** through an **eDAQ** implementation of **Pulse-Shape Discrimination** between light-ions and electrons.

#### • Creation of elements:

 HIγS (2017) demonstration of <sup>7</sup>Li(γ,t)α measurement [BBN]; <sup>12</sup>C(γ,α)αα and <sup>9</sup>Be(γ,n)αα [α-fusion reactions]

#### • Collective dynamics in reactions:

- The dynamics of fission processes
- (γ,p) and (γ,α) on transition metals [pprocess] and rare-earth elements

#### Societal Impact:

- Fission delayed-beta capability and coupling to external arrays (ELIGANT and ELIADE)
- Radio-isotope production based on γ-ray induced reactions, in particular fission





