AGATA: Precision Spectroscopy of Exotic Nuclei

AGATA

Daresbury Laboratory, University of Liverpool, University of West of Scotland University of York

Progress of the AGATA array

> AGATA 1π already available

> Current MoU (end 2020) for 1/3 of full array – almost there.

AGATA deployment

AGATA@SPES: 2023-2025

Selective Production of Exotic Species

- SPES is a new ISOL radioactive-beam facility under development at LNL, Italy
- Protons from new cyclotron incident on uranium carbide targets
- Reacceleration up to 10 MeV/A using ALPI superconducting linac
- Development in phases: 2021 to 2023
- Unique aspect of SPES: high intensity primary proton beam
- Protons will induce 10¹³ fissions/s
- For example: ⁹⁴Rb 10⁹ pps;
 ¹³²Sn 10⁸ pps; ¹⁴²Xe 10⁶ pps
- High-intensity radioactive beams

Techniques (e.g.):

- Nucleon transfer
- Deep-inelastic reactions
- Low-energy Coulomb excitation
- Fusion evaporation

AGATA@FAIR: > 2025

High-resolution γ -ray spectroscopy (HISPEC) following reactions induced by radioactive ion beams at relativistic energies

AGATA Project Objectives

...are to contribute at the highest level to the current and planned phases of AGATA through

(a) Contribution to AGATA equipment, including detectors (MoU);
(b) pushing the development of AGATA towards the new science opportunities by exploiting the UK's leading technical and scientific capabilities.

Specific aims:

- (WP1) Contribute detectors, including working with ORTEC to develop second supplier;
- **(WP2)**: Lead the complex mechanical design and construction required for AGATA at new facilities;
- **(WP3):** Contribute at a high level to the development of AGATA electronics, and to lead initial developments for the future phase of the AGATA electronics system;
- (WP4): Lead crucial developments on pulse-shape analysis and tracking the techniques that underpin the entire gamma-ray tracking concept;
- **(WP5):** Lead performance and experiment-design simulations to enable the maximum scientific output.

AGATA Project Grant

Nov 2017: SOI Submitted May 2018: Programme Evaluation submission May 2018, more info August 2017 Nov 2018: Invitation to make PPRP bid Feb 2019: Submitted Proposal April 2019: PPRP Meeting May 2019: Visiting Panel June 2019: Science Board – good (high level) feedback, but no decision Dec 2019: Science Board – "tensioning" with ACPA

Final Bid £4.9M (of which £2.0M capital)

Key points:

- Bid meets our commitment under the current MoU (to contribute to 60detector array)
- Case aimed at SPES and FAIR with a case for a 90-detector array (its growing)

Institutions (involved in Project): York (Bentley, Paschalis, Petri), Daresbury (Simpson, Labiche, Lazarus...), Liverpool (Harkness-Brennan, Boston A, Nolan, Boston H,...), UWS (Smith)

AGATA Interim Funding

- Delay to funding decision due to short delay to ACPA
- Good feedback from Science Board
- UK Commitments to AGATA project especially for Legnaro phase (2022)

STFC asked us to bid for "interim funding" – Ocober 2019 - April 2020

First 6 months of project work (173k)

- Mechanics for Legnaro
- PSA developments for Legnaro Phase
- Simulation package for AGATA-PRISMA

Capital contribution (£540k)

- Prototype AGATA capsule ORTEC (new Supplier) 50% from Liverpool
- Two AGATA capsules from Mirion
- Enough for 1 <u>full triple cluster</u> delivery mid 2020

£713k awarded, October 2019-March 2020.

Questions

UK: a driving force for AGATA

Strategic Leadership *past* and **present**

- AGATA Steering Committee: Chair <u>Nolan 2009-2011</u> and Vice-chair Simpson 2018-2020 Chair Simpson 2021-2022), Members Bentley and Simpson
- AGATA Collaboration Council: Chair and spokesperson: <u>Simpson</u> 2010-2014
- AGATA Management Board: Project Manager and Chair: <u>Simpson</u> 2002-2010. Member 2011-present A.Boston
- Scientific Leadership *past* and **present**
- Spokesperson for Legnaro Campaign: <u>S.Freeman (Manchester)</u>
- **Co-Spokesperson** for PRESPEC/GSI Campaign (using AGATA) <u>Bentley</u>
- Spokesperson for current GANIL Campaign: Zs.Podolyak (Surrey)
- Chair International Steering Committee for PRESPEC@GSI/FAIR <u>P.Regan (Surrey)</u>

Technical Leadership...

• See over...

AGATA tasks and working groups

Project Manager, Resource Manager, Technical Coordinator

Working Groups Leaders, ASC Spokesperson ACC Spokesperson,

Local Campaign Managers, LNL, GSI and GANIL

UK: a driving force for AGATA

A. Gadea (Project Manager)

A. Boston, B. Million, A. Korichi, F. Recchia, H.Hess, P. Reiter (ASC) and W.Korten (ACC). J. Gerl (LCM-GSI), E. Clement (LCM-GANIL)

Work package 1 - Detectors

- 1. Capital purchase: **5 AGATA asymmetric encapsulated detectors** (York and UWS)
- 2. Capital purchase: **ORTEC prototype** asymmetric encapsulated detector (Liverpool) new company in market (**first order**)
- 3. Customer Acceptance Testing (CAT) of detectors (Liverpool)
- 4. Cryostats, mechanical structure and electronics (York, UWS)

Work Package 1 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	5,372	14,890	21,316	23,602	11,801	76,980
Estates/Indirect/Overheads	3,858	7,716	9,716	11,716	5,858	38,864
Equipment	247,802	39,835	1,170,041	257,938	0	1,715,616
Travel	560	2,120	3,680	3,120	1,560	11,040
Other DIC	0	5,440	0	0	0	5,440
Total	257,591	70,000	1,204,753	296,376	19,219	1,847,941

Staff:

- A.Boston (5%) WP leader, liaison with companies, prototype develpment
- H.Boston (5%) CAT lead
- Bentley (2.5%) local procurement
- Smith (2.5%) local procurement
- Judson (3.7%) characterisation
- Technician (22.5%) CAT

- A.Boston Leads many developments with industrial partners in Ge technology
- H.Boston CAT lead for AGATA project
- Liverpool industrial applications of Ge technology

Work package 2 - Electronics

- 1. Development of tools for monitoring/visualization of signals (VHDL firmware, software and GUI) provides crucial diagnostics
- 2. Development of energy processing algorithm to improve performance
- 3. Scoping of future work for next phase of electronics uses UK expertise in cold ASICs and positions UK for future lead.

Work Package 2 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	0	10,288	53,750	99,812	51,404	215,253
Estates/Indirect/Overheads	0	7,613	39,775	73,861	38,039	159,287
Equipment	2,500	10,000	10,000	10,000	2,500	35,000
Travel	3,150	6,300	6,300	14,300	3,150	33,200
Other DIC	0	0	0	0	0	0
Total	5,650	34,201	109,824	197,972	95,092	442,740

Staff:

- Lazarus (10%) WP leader, technical oversight (partly Cross Comm (CC))
- Kogimtzis (50%) Electronics Design (partly CC)
- **Pucknell (50%)** Software design engineer (*partly CC*)
- Technician (17.5%) prototyping build and test

- I. Lazarus AGATA WG leader,
- Daresbury Leading role in AGATA
 Phase 1 electronics and software

Work package 3 - Mechanics

- 1. Design, procurement, assembly and commissioning of a 90-detector frame for Legnaro/SPES
- 2. Design of a system capable of holding 180 detectors (2 x the 90 detector structure) at FAIR
- 3. Design and delivery of new detector mounting mechanics (SPES and FAIR)
- 4. Overall mechanical engineering management for the AGATA project

Work Package 3 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	21,483	83,904	74,266	47,677	23,237	250,567
Estates/Indirect/Overheads	15,897	62,089	54,957	35,281	17,195	185,420
Equipment	0	183,760	0	0	40,540	224,300
Travel	5,000	10,000	10,000	5,000	5,000	35,000
Other DIC	0	0	0	0	0	0
Total	42,380	339,753	139,223	87,958	85,972	695,287

Staff:

- Grant (16.2%) WP Leader, technical oversight (*partly CC*)
- Burrows (75%) Mechanical Design (partly CC)
- Electrical Tech (17.5%) technical support
- Mech Tech (13%) technical support
- **ETC Tech (7.5%)** technical support

- A. Grant AGATA WG leader,
- UK delivered all mechanical design work for AGATA
- UK designed and built most largescale gamma-ray arrays in Europe

Work package 4 – Pulse-shape analysis

- 1. Data set for multiple interactions in a segment to improve tracking
- 2. Optimisation of grid-search algorithm for larger array
- 3. Implementation of a multiple-interaction algorithm in collaboration with GRETA
- 4. Characterisation of the ORTEC prototype
- 5. Experimental validation of novel self-calibration method.

Work Package 4 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	5,081	86,989	93,504	80,394	11,944	277,912
Estates/Indirect/Overheads	12,173	77,683	78,350	79,016	12,840	260,061
Equipment	0	0	0	0	0	0
Travel	1,560	8,120	11,120	11,120	2,560	34,480
Other DIC	1,600	1,440	0	0	0	3,040
Total	20,414	174,232	182,973	170,530	27,344	575,493

Staff:

- Harkness-Brennan (10%) WP Leader, tech oversight, PDRA/PhD supervision
- **Boston (2.5%)** PDRA/PhD supervision
- Nolan (5%, zero cost) work with Liv PDRA
- Petri (5%, 2.5% cost), Paschalis (5%) oversee work on self-calibration
- Liverpool PDRA (75%) Tasks 1-3
- York PDRA (25%) Task 5
- PhD student Task 4
- Technician (22.5%) mech. support

- Harkness-Brennan AGATA WG leader
- Boston AGATA WG leader
- Nolan former Chair AGATA Steering Committee
- UK leads PSA activities in AGATA
- Petri, Paschalis led self-calibration R&D

Work package 5 – Expt design & performance

- 1. AGATA simulation code: improve PSA in simulation with data
- 2. AGATA simulation code: integrate beam-optics event generator for fragmentation beams
- 3. AGATA simulation code: develop gamma-ray polarisation model
- 4. Connect AGATA and PRISMA codes for LNL/SPES
- 5. Connect AGATA and LYCCA/S-FRS/Spectrometer codes for HISPEC (FAIR)
- 6. Array performance tests and experiment design tasks (SPES & FAIR)

Work Package 5 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	18,212	55,665	56,714	78,700	39,765	249,056
Estates/Indirect/Overheads	31,211	63,165	63,744	64,340	32,478	254,938
Equipment	0	0	0	0	0	0
Travel	1,760	7,520	5,520	5,520	3,760	24,080
Other DIC	800	1,440	0	0	0	2,240
Total	51,983	127,790	125,978	148,560	76,003	530,314

Staff:

- **Bentley (10%)** WP Leader, PDRA supervision, scientific oversight, contribute to tasks 5 and 6.
- Labiche (40%) technical oversight of all tasks, work with PDRA
- Petri (5%, 2.5% cost), Paschalis (5%) support to PDRA on physics simulations and liaise with GRETA team
- York PDRA (62.5%) all tasks.

- Labiche AGATA WG leader, UK simulation specialist
- **Bentley -** AGATA Campaign leader (GSI), UK-HISPEC lead, LYCCA simulation leader
- Petri, Paschalis led self-calibration R&D,
 worked on gamma-ray tracking for AGATA
 and GRETINA

Work package 6 – Project Management

- 1. Oversight of all tasks and tracking progress
- 2. Maintain project plan, adjusting tasks and timelines
- 3. Financial tracking and planning
- 4. Risk management
- 5. Oversight Committee liaison
- 6. Liaise with internation project at all levels

Work Package 5 Summary (Cost to STFC)	2019/20	2020/21	2021/22	2022/23	2023/24	Total
Staff	18,212	55,665	56,714	78,700	39,765	249,056
Estates/Indirect/Overheads	31,211	63,165	63,744	64,340	32,478	254,938
Equipment	0	0	0	0	0	0
Travel	1,760	7,520	5,520	5,520	3,760	24,080
Other DIC	800	1,440	0	0	0	2,240
Total	51,983	127,790	125,978	148,560	76,003	530,314

Staff:

- **Bentley (10%)** WP Leader, PI for project, PI for York, WP5 Management
- A.Boston (5%) PI for Liverpool, WP1 Management
- Simpson (15%) PI for Daresbury, WP3 Management, ASC Chair/Vice-Chair
- Project manager (20%)
- Harkness Brennan (2.5%) WP4 Management
- Smith (2.5%) PI for UWS

(List to be completed)

AGATA Advanced gamma tracking array

ISOL Production Schemes

Cs, Ba, ... very intense, pure

(AGATA@) SPES vs (GRETA@) FRIB

Eight examples where SPES yields win over those from FRIB...

Beam	Ζ	N	SPES intensity (p.p.s.)	FRIB intensity (p.p.s.)	Factor
¹⁰⁰ Rb	37	63	8.99×10^{3}	$1.00 imes 10^1$	900
⁹⁴ Sr	38	56	2.54×10^{8}	2.16×10^{6}	120
¹¹⁸ Ag	47	71	1.03×10^{8}	1.43×10^{6}	70
¹³² Sn	50	82	3.11×10^{7}	1.92×10^{5}	160
¹⁴⁰ Te	52	88	5.51×10^{3}	2.12×10^{1}	260
¹³⁸ Xe	54	84	2.02×10^{8}	1.66×10^{6}	120
¹⁴⁶ Cs	55	91	8.90×10^{4}	2.37×10^{2}	400
¹⁴⁰ Ba	56	84	1.21×10^{9}	1.70×10^{6}	700

... with typical improvement factors of several hundred.

A number of experiments that cannot be carried out with FRIB + GRETA (on a reasonable timescale) <u>can</u> be carried out with SPES + AGATA

Unique opportunities with SPES and AGATA

Shell evolution near doubly magic ¹³²Sn

- e.g. ¹³²Sn SPES beam intensity: 10⁷ p.p.s.
- Excited states and single particle energies using deep-inelastic reactions with AGATA + PRISMA
- Spectroscopic factors studied using light-ion transfer with AGATA + MUGAST

Reflection asymmetry in neutron-rich lanthapi

- e.g. ¹⁴⁴Xe SPES beam intensity: 10⁵ p.p.s.
- Radioactive beam Coulomb excitation
- AGATA coupled to SPIDER (Si detector
- Measurement of B(E3) values
- A range of experiments possible...

Uniqueness of FAIR

FAIR will be a worldwide unique facility to deliver high-intensity radioactive ion beams covering the entire chart of nuclides with high energies up to 1500 MeV/u.

FAIR will therefore be **the world-leading facility** for experiments that require or take advantage of:

- highest energy/velocity of the RIBs (beyond 0.5 GeV/u)
- radioactive beams of all elements up to U
- isotopically pure secondary beams
- electron-free beams (fully stripped ions) up to the heaviest elements
- isomeric beams (down to ns lifetimes)

Highlight physics cases for AGATA@FAIR

From AGATA White Book

Unique opportunities with FAIR and AGATA

Spectroscopy of r-process nuclei around N=126

- Knockout from intense beam of ²⁰⁴Pt
- Evolution of proton s.p. orbitals, r-process region
- Uses unique FAIR capability (heavy nuclei)

Spectroscopy of exotic Pb isotopes (e.g. ²¹⁸Pb)

- In-beam (p,2p) reactions using AGATA and MINOS
- Evolution of shell-structure far from stability
- Uses unique FAIR capability (heavy nuclei)
- Very high velocity (β~0.8) only possible at FAIR
- AGATA position tracking crucial

Simulations from 15 \square 90 detectors:

SPES-type example

- Typical reaction, $v/c \sim 5\%$
- Multiple coincident gammas
- "Statistical reaction"
- γ - γ , and γ - γ - γ analysis
- Factor ~200 better for γ - γ - γ

v-ray energy (keV)

Q8: Improvements from 15 – 60 detectors

- "SPES-type" example
- Typical reaction, v/c ~ 5%
- Multiple coincident gammas
- "Statistical reaction"
- γ - γ , and γ - γ - γ analysis
- Factor ~200 better for γ-γ-γ analysis

3480.0

2380.3

1416.0

616.2

0.0

Q8: Improvements from 15 – 60 detectors

Position resolution essential

- High v/c = 80%
- Huge Doppler effects
- Factor ~300 better for γ-γ

Spectrum "empty" for 15 detectors

Societal Impact

State of the art detectors

Societal Impact

Many applied projects funded by a variety of bodies, including, STFC/IPS/CLASP/PNPAS, Universities, EPSRC, TSB, MRC, NHS, NNL (NDA), AWE

e.g.

SMARTPET (Medical)

• Novel Small Animal PET system

PROSPECTUS (Medical)

• Novel SPECT imaging system.

PGRIS (Security, decommissioning)

Hand-held radiation identification and location device

Gri+: Portable Gamma Imaging System (security, decommissioning, environment)

• 3D Gamma and Optical Stereoscopic Image Fusion

All projects are collaborations some with industrial partners. All involve contributions from other parts of STFC.

Case Study: A 3D integrated mobile γ-ray and vision system

- Gamma-ray interaction positions determined by PSA
- Kinematic reconstruction of gamma-ray paths
- Source of radiation located at max cone overlap
- In-situ nuclear decontamination field trials at Sellafield 2019

From AGATA to portable imaging

AGATA MoU (-> end 2020)

- Agreement on the realisation, operation and management
- Sharing of costs and responsibilities
- Operation costs
- Current specific project to $1/3 4\pi$ (60 detectors) by 2021
- Aim for 4π by 2031
- Open collaboration
- Laboratories are science driven (PACs)
- Signed by STFC (G.Blair)

MoU ongoing, ~85 % achieved (detectors) Capital contribution, ~85% achieved (UK shortfall)

- AGATA 4π: Project Definition: Preparation Ongoing (**informing this bid**)
- New MoU being planned for the 4π array

AGATA Collaboration see http://npg.dl.ac.uk/agata_acc/index.html

Q1: Impacts of AGATA

Metrics:

- 17 past PhD students
- 5 current PhD students
- 136 papers (83 technical, 53 science)
- 19 PDRAs worked on AGATA (/data)
- All these are tracked within the AGATA collaboration

