Electromagnetic Questions

Question 1. A spatially dispersive material has $\mu = \mu_0$ and

$$\epsilon(\omega, \mathbf{k}) = \epsilon_0 + \frac{\chi_0}{-\omega^2 + i\lambda\omega + \omega_P^2 + k_z^2}$$

Calculate the dispersion relation for both Transverse E(t, x) = E(t, z)i and Longitudinal waves E(t, x) = E(t, z)k in the z-direction. I.e. the relationship between ω and k such that Maxwell's equations are solved by $E(t, x) = e^{i\omega t + k \cdot x} E_0$

Question 2. A solenoid and a cylindrical magnet are designed to produce the same B field in a vacuum (As me to draw a picture).

If I place a rod of iron in the middle $\mu = 1000\mu_0$ describe the resulting B field near the rod.

Question 3. (a) Show that the two Maxwell's equations involving D and H are invariant under the "gauge" transformation

$$H \to H + \nabla \psi + \dot{\Psi}$$
 and $D \to D + \nabla \times \Psi$

(b) Are \boldsymbol{D} and \boldsymbol{H} measurable quantities.