Parametric study of plasma wakefield acceleration at CLARA

H. Saberi, J. Zhang, O. Apsimon, S. Boogert, D. Angal-Kalinin, R. D'Arcy, T. Pacey and G. Xia

December 3, 2024

The University of Manchester

Parametric study of plasma wakefield acceleration at CLARA

▲ ● ▶ ▲ ● ▶ ▲ ● ▶ ■
 December 3, 2024

- 2 PWFA @ CLARA Early research
- **3** Complementary research

в

500

- 2 PWFA @ CLARA Early research
- 3 Complementary research

Unique opportunity of CLARA facility

- CLARA FEBE has a high potential to investigate plasma wakefield acceleration (PWFA) for the first time in the UK.
 - Electron beam with versatile parameters.
 - Advanced mask technology for beam shaping.
 - High power laser alongside the FEBE beamline.
 - Expert scientists and technicians in the field.

< 67 ▶ 4 3

PWFA in a nutshell

- The driver beam generates a strong accelerating/focusing wakefield inside the plasma.
- A witness beam injected at a proper distance behind the driver can ride the wakefield and accelerate.
- The wakefield could reach 1 GV/m or higher, that leads to a more compact accelerator.

Parametric study of plasma wakefield acceleration at CLARA

2 PWFA @ CLARA - Early research

3

э

500

Beam dump

PWFA @ CLARA - A high impact experiment

• We aim at PWFA experiment toward the energy doublings of the witness beam with small energy spread.

< 一型

▶ 4 3

Preliminary simulation studies

- Pre-design simulations are needed to investigate the optimum regime of acceleration and the baseline parameters.
- We have conducted particle-in-cell (PIC) simulation studies using
 - QV3D code (Quasistatic 3D code developed by Alexander Pukhov)
 - FBPIC (Cylindrical 2D code developed at Berkeley Lab)

n

2 PWFA @ CLARA - Early research Baseline parameters (?)

3

э

500

PWFA with feasible parameters (?) at CLARA FEBE

Parameter	Symbol [Unit]	Value
D		
Driver beam		
Energy	$E_{\rm d}$ [MeV]	250
Charge	$Q_{ m d} [{ m pC}]$	200
Length	$\sigma_{\rm fd} [\mu {\rm m}]$	15
Radius	$\sigma_{rd} \left[\mu m \right]$	50
Energy Spread	$\delta E_d[\%]$	1
Normalized Emittance	$\varepsilon_{\rm nr} \ [{\rm mmmrad}]$	2
Witness beam		
Energy	E_{w} [MeV]	250
Charge	$O_{\rm m}$ [nC]	10
Longth	tew [pc]	10
Deller	$\delta_{\xi w} [\mu m]$	10
Radius	$\sigma_{rw} [\mu m]$	20
Energy Spread	$\delta E_{\mathbf{w}}[\%]$	1
Normalized Emittance	$\varepsilon_{nw} \text{ [mm mrad]}$	2
Plasma		
Density	$n_0 [{\rm cm}^{-3}]$	$5 \times 10^{14} - 10$
Wavelength	$\lambda_0 [\mu m]$	
Longth	La [cm]	25
Longth	E0 [em]	20
Other parameters		
river/Witness separation	$\Delta \xi$	$\sim \lambda_0/2$

- Two beams of witness and driver will be generated using the mask already developed at CLARA.
- Here, physically reasonable parameters are selected based on the future developments at CLARA.

E. Snedden et al. PRAB 27 041602 (2024)

December 3, 2024

PWFA with feasible parameters (?) at CLARA FEBE

Symbol [Unit]	Value
$E_{\rm d}$ [MeV]	250
$Q_{\rm d} [\rm pC]$	200
$\sigma_{\rm Ed} [\mu {\rm m}]$	15
$\sigma_{rd} \left[\mu m \right]$	50
$\delta E_d[\%]$	1
$\varepsilon_{nr} \text{ [mm mrad]}$	2
$E_{\rm w}$ [MeV]	250
$Q_{\mathbf{w}} [\mathrm{pC}]$	10
$\sigma_{\xi w} [\mu m]$	10
$\sigma_{\rm rw} [\mu {\rm m}]$	20
$\delta E_{\rm w}[\%]$	1
$\varepsilon_{nw} \text{ [mm mrad]}$	2
$n_0 [{ m cm}^{-3}] \ \lambda_0 [\mu { m m}] \ L_0 [{ m cm}]$	$5 \times 10^{14} - 10^{10}$
	$\begin{array}{l} \label{eq:symbol [Unit]} \\ \hline E_4 \left[\mathrm{MeV} \right] \\ \hline Q_4 \left[\mathrm{pC} \right] \\ \hline q_4 \left[\mu \mathrm{m} \right] \\ \sigma_{\mathrm{rd}} \left[\mu \mathrm{m} \right] \\ \sigma_{\mathrm{rd}} \left[\mu \mathrm{m} \right] \\ \varepsilon_{\mathrm{nr}} \left[\mathrm{nm \ mrad} \right] \\ \hline \\ \hline \\ E_{\mathrm{w}} \left[\mathrm{MeV} \right] \\ \hline \\ \hline \\ Q_{\mathrm{w}} \left[\mathrm{pC} \right] \\ \hline \\ \sigma_{\mathrm{ew}} \left[\mu \mathrm{m} \right] \\ \sigma_{\mathrm{fw}} \left[\mathrm{nm \ mrad} \right] \\ \hline \\ \\ \\ n_0 \left[\mathrm{cm}^{-3} \right] \\ \lambda_0 \left[\mu \mathrm{m} \right] \\ L_0 \left[\mathrm{cm} \right] \end{array}$

 $\Delta \varepsilon$

Other parameters

Driver/Witness separation

 $\sim \lambda_0/2$

- Two beams of witness and driver will be generated using the mask already developed at CLARA.
- Here, physically reasonable parameters are selected based on the future developments at CLARA.
- Both beams have similar energy of 250 MeV.

E. Snedden et al. PRAB 27 041602 (2024)

December 3, 2024

PWFA with feasible parameters (?) at CLARA FEBE

Parameter	Symbol [Unit]	Value
Driver beam		
Energy	$E_{\rm d}$ [MeV]	250
Charge	$Q_{\rm d} [\rm pC]$	200
Length	$\sigma_{\rm Ed} [\mu {\rm m}]$	15
Radius	$\sigma_{rd} [\mu m]$	50
Energy Spread	$\delta E_{\rm d}$ [%]	1
Normalized Emittance	$\varepsilon_{nr} \text{ [mm mrad]}$	2
Witness beam		
Energy	$E_{\rm w}$ [MeV]	250
Charge	$Q_{\rm w} [{\rm pC}]$	10
Length	$\sigma_{\xi w} \left[\mu m \right]$	10
Radius	$\sigma_{\rm rw} [\mu {\rm m}]$	20
Energy Spread	$\delta E_{\rm w}[\%]$	1
Normalized Emittance	$\varepsilon_{nw} \text{ [mm mrad]}$	2
Plasma Density	$n_{\rm e}$ [cm ⁻³]	$5 \times 10^{14} - 10$
Wavelongth	ho [cm]	5 × 10 = 10
Length	$L_0 [\mu m]$	25
Dengen	E0 [cm]	20

Other parameters

Driver/Witness separation

 $\sim \lambda_0/2$

 $\Delta \varepsilon$

- Two beams of witness and driver will be generated using the mask already developed at CLARA.
- Here, physically reasonable parameters are selected based on the future developments at CLARA.
- The CLARA beam is cut close to the tail.

E. Snedden et al. PRAB 27 041602 (2024)

December 3, 2024

PWFA with feasible parameters (?) at CLARA FEBE

Parameter	Symbol [Unit]	Value
Driver beam		
Energy	$E_{\rm d}$ [MeV]	250
Charge	$Q_{\rm d} [\rm pC]$	200
Length	$\sigma_{\rm Ed} [\mu {\rm m}]$	15
Radius	$\sigma_{rd} [\mu m]$	50
Energy Spread	$\delta E_{\rm d}$ [%]	1
Normalized Emittance	$\varepsilon_{nr} [mm mrad]$	2
Witness beam		
Energy	$E_{\rm w}$ [MeV]	250
Charge	$Q_{\rm w} [{\rm pC}]$	10
Length	$\sigma_{\xi w} [\mu m]$	10
Radius	$\sigma_{rw} [\mu m]$	20
Energy Spread	δE_{w} %	1
mergy opread	W [/ 0]	

Plasma		
Density	$n_0 [{\rm cm}^{-3}]$	$5 \times 10^{14} - 10^{1}$
Wavelength	$\lambda_0 [\mu m]$	
Length	L_0 [cm]	25

 $\Delta \varepsilon$

Other parameters

Driver/Witness separation

 $\sim \lambda_0/2$

- Two beams of witness and driver will be generated using the mask already developed at CLARA.
- Here, physically reasonable parameters are selected based on the future developments at CLARA.
- Identical energy spread and emittance are considered.

E. Snedden et al. PRAB 27 041602 (2024)

December 3, 2024

2 PWFA @ CLARA - Early research

Baseline parameters (

Driver's wakefield

Witness energy gets doubled Betatron radiation

3 Complementary research

イロト イポト イヨト イヨト

в

Driver beam moving inside plasma

- Simulations for plasma density scan are conducted using QV3D code.
- Plasma length is 25 cm.

Summary 00

Driver beam moving inside plasma

- Simulations for plasma density scan are conducted using QV3D code.
- Plasma length is 25 cm.

The driver interaction at the optimum density (grey area) will be in the linear regime.

► 4 Ξ

э

16 / 27

< 67

500

n

2 PWFA @ CLARA - Early research

Witness energy gets doubled

3

< 局

PWFA @ CLARA - Early research

Complementary research

Beam-loading

- Witness needs to be injected at the accelerating and focusing phase, i.e. at a distance of $\lambda_p/2$ from the driver beam.
- The witness current can change the accelerating wakefield, known as beam-loading effect.
- The aim is to benefit beam-loading to flatten wakefield for monoenergetic acceleration of witness beam.

PWFA @ CLARA - Early research

Complementary research

Careful witness injection is necessary

ъ

500

19 / 27

・ロト ・ 同ト ・ ヨト ・ ヨト

PWFA @ CLARA - Early research

Complementary research

Summary 00

High quality witness beam with double energy

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Case study using FBPIC code

	Parameters	Values
Plasma	Density	5.0×10 ¹⁶ cm ⁻³
	Length	12 cm
	Wavelength (λ_p)	149.3 µm
	lons	He⁺
	Density	2.38×10 ¹⁵ cm ⁻³
	Charge	150 pC
	Energy	250 MeV
Driver	Bunch length	10 µm
Deam	Bunch radius	50 µm
	Energy spread	1%
	Emittance	5.0 mm mrad

	Parameters	Values
	Density	3.96×10 ¹⁶ cm ⁻³
	Charge	10 pC
	Energy	250 MeV
Witness	Bunch length	10 µm
beam	Bunch radius	10 µm
	Energy spread	1%
	Emittance	5.0 mm mrad
	Distance from driver	0.50λ _p (75 μm)

Click to play the video

Parametric study of plasma wakefield acceleration at CLARA

December 3, 2024

< 局

21 / 27

в

500

22 / 27

n

2 PWFA @ CLARA - Early research

Betatron radiation

3

イロト イポト イヨト イヨト

Betatron radiation in PWFA

- QV3D calculates the integrated photons.
- Here, the radiation has been calculated for the optimum density and phase lag.
- About radiation spectrum:
 - Plot (a): The combined radiation spans from UV to X-ray.
 - Plot (b): Driver beam mainly emit low-energy photons to UV.
 - Plot (c): Witness beam emit X-ray as the dominant photons.

2 PWFA @ CLARA - Early research

3 Complementary research

в

500

24 / 27

イロト イポト イヨト イヨト

What else can we explore?

X-ray source

- Betatron radiation
- Synchrotron-like broadband X-ray source

Betatron Radiation diagnostics

· Betatron spectroscopy can works as a novel non-invasive diagnostics

Plasma Beam Dump (PBD) and Energy Recovery

- Active PBD.
- Passive PBD.
- Energy recovery from plasma

1.1.2

- 2 PWFA @ CLARA Early research
- **3** Complementary research

в

- Plasma Wakefield Acceleration at CLARA FEBE will make this facility the first in the UK to achieve energy doubling.
- This project will foster both national and international collaborations.
- Early studies using PIC codes of QV3D and FBPIC demonstrate that PWFA aiming at energy doubling is feasible at CLARA FEBE.
- The focus is on the PWFA experiment, but there are certainly related topics we can explore alongside this experiment
 - X-ray source based on PWFA
 - Betatron diagnostics
 - Plasma beam dump and energy recovery