4th CLARA User Meeting 2024-12-03, Daresbury Laboratory

<u>Fahim Habib,</u> Constantin Aniculaesei, Arie Irman (HZDR), Grace Manahan, Thomas Pacey, Lewis Reid et al.

Real-time PWFA metrology

Department of Physics, University of Strathclyde Scottish Centre for the Application of Plasma-Based Accelerators (SCAPA) Scottish Universities Physics Alliance (SUPA) The Cockcroft Institute

Prototyping plasma-based stages for the UK XFEL project

Plasma-booster team: Fahim Habib, Lily Berman, David Dunning, Brian McNeil, Ed Snedden, Peter Williams et al.

A preliminary UK XFEL layout options

Science and Technology Facilities Council Project Sponsor: John Collier Science Lead: Jon Marangos Technical Lead: Jim Clarke Project Manager: Paul Aden

Application of next-generation of electron beams @UK XFEL

Prototyping high brightness PWFA stage @ CLARA FEBE?

What are the key ingredients for a highbrightness PWFA stage?

Optical downramp injection aka Plasma torch

Parameter	High charge	At compr	At compressor exit	
	250	wavelength	807 nm	
Lifergy [iviev]	230	Peak Power	122 TW	
Charge [pC]	250	Energy	2.8 J	
RMS t [fs]	100	τ _{FWHM}	23 fs	
- / [0/]	4 Γ	Rep Rate	5 Hz	
0 _E /E [%]	<5	w _{FWHM}	73 mm	
RMS x [µm]	100	Strehl ratio	0.90	
RMS y [µm]	100	Pointing	3 µrad	
ε _N x [μm]	5	stability		
ε _N y [μm]	5	Energy stability	1%	

Plasma photocathode injection

Two-bunch mode

Reliable electron driver beam

High-power laser system

Plasma source

Electron beam and plasma diagnostics

Computational methods

We need real-time PWFA metrology

What diagnostics do we have for PWFA metrology?

Few cycle laser pulse-based shadowgraph Effective at plasma densities >1.0 \times 10¹⁸ cm⁻³

Matlis, N., et al. Nature Phys **2**, 749–753 (2006) Buck, M. et al . Nat. Phys. 7, 543–548 (2011) Sävert, A et al.Phys. Rev. Lett. 115, 055002 (2015)

Gilljohann, M. F., et al. *Physical Review X* 9.1 (2019): 011046.

Methods based on trailing bunch probing

Clayton, C. E. et al. Nature 515, 92–95 (2014) Schröder, S., Lindstrøm, C.A., Bohlen, S. et al. Nat Commun 11, 5984 (2020)

Using the plasma glow as plasma stage diagnostics

E. Oz et al., "Plasma Light diagnostic for PWFA at SLAC," *The 31st IEEE International Conference on Plasma Science, 2004. ICOPS (2004) Scherkl, P. et al.*. *Phys. Rev. Accel. Beams 25, 052803 (2022)* L. Boulton *et al.* arXiv:2209.06690v1 (2022)

PWFA metrology via electron beam probes

Zhang, C., Hua, J., Xu, X. et al. Sci Rep 6, 29485 (2016) Zhang, C, Phys. Rev. Lett. **119**, 064801 (**2017)**

Electron beam probe imaging of the plasma wave

Wan, Y., Seemann, O., Tata, S. et al. Nat. Phys. **18**, 1186–1190 (2022) Wan, Y. et al. Sci. Adv.**10**, eadj3595 (2024)

Electron beam probing @CLARA FEBE

Proposal: Real-time PWFA metrology

- State-of-the-art linac producing 250 MeV dense electron beam + 120 TW high-power laser system
- □ Leverage these unique capabilities and hardware @ CLARA FEBE for science not possible elsewhere
- Electron beam-based metrology of plasma waves and electron beams leverages the unique combination of hardware available at CLARA FEBE
- □ In vivo probing of PWFA, LWFA and electron beams provides real-time monitoring of conditions → essential for optimization and stability of the plasma stages
- ❑ We will be able to study the impact of ramps on the in and out-coupling of the driver and witness beams → pathway to PWFA or LWFA staging
- □ Electron beam probing would be first time in the UK and linac-based PWFA facility→ Pioneer the technology and lead the community worldwide
- □ Pathway towards PWFA stage supporting high-brightness electron beam injection

Synergies with other activities:

- External injection programme at CLARA FEBE
- □ Strong synergies with the activities at RUEDI
- □ UK XFEL plasma booster project

PWFA-prototyping @CLARA FEBE for UK XFEL

807 nm

23 fs

5 Hz 73 mm

0.90

3 µrad

Parameter	High charge	At compressor exit	
Energy [MeV]	250	wavelength	807 ni
Charge [pC]	250	Peak Power	122 T\
RMS t [fs]	100	тычим	2.8 J 23 fs
σ /F [%]	<5	Rep Rate	5 Hz
	100	w _{FWHM}	73 mr
	100	Strehl ratio	0.90
κινις γ [μm]	100	Pointing stability	3 μra
ε _N x [μm]	5	Energy	
ε _N y [μm]	5	stability	1%

\Box Increase electron beam density \rightarrow Stronger compression

 \Box Increase electron beam density \rightarrow Stronger focusing via plasma lenses

