First neutrino+antineutrino results from NOvA Rutherford Appleton Laboratory October 24, 2018

UC

Chris Backhouse

The NOvA experiment

u_{μ} disappearance

symmetries in neutrino mixing

ν_e appearance

neutrino mass ordering

CP-violation

Future

Neutrinos are everywhere

Solar

Atmospheric

Reactor

FACT: about 65 million neutrinos pass through your thumbnail every second.

- Second most abundant particle in the universe
- But we know almost nothing about them
- Only interact via the weak force
- Need powerful sources and huge detectors

Neutrinos are unique

- Far lighter than the quarks and charged leptons
- May get their masses by a different mechanism
 - $m^2_{
 m EW}/m_
 u \sim 10^{15}\,{
 m GeV} \sim m_{
 m GUT}$

u

C

t

Very different mixing structure to quarks

$$|
u_{lpha}
angle = rac{1}{\sqrt{2}}\left(|
u_1
angle + |
u_2
angle
ight)$$

$$|
u_{lpha}
angle = rac{1}{\sqrt{2}}\left(|
u_1
angle + |
u_2
angle
ight)$$

.

 $m_2 > m_1$

Neutrino oscillations $|\nu_{\alpha}\rangle = \frac{1}{\sqrt{2}}(|\nu_{1}\rangle + |\nu_{2}\rangle) \qquad |\nu_{\beta}\rangle = \frac{1}{\sqrt{2}}(|\nu_{1}\rangle - |\nu_{2}\rangle) \qquad m_{2} > m_{1}$

 $|\nu_{\alpha}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle \quad \rightarrow \quad P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \frac{\sin^{2} 2\theta}{\sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)}$

Oscillation structure

Current world knowledge

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Open neutrino questions

- Dirac or Majorana?
 - Is $\bar{\nu}$ just a right-handed ν ?
- Absolute masses
- CP-violation?
 - Do ν and $\bar{\nu}$ oscillations differ?
- Ordering of the mass states
- Random mixing parameters, or patterns?

symmetry magazine 7/46

What do we need?

Requirements for neutrino oscillation experiment

- High power neutrino source
- Large detector
- Good resolution of signal from background
- Good control of systematic uncertainties

What do we need?

Requirements for neutrino oscillation experiment

- High power neutrino source
- Large detector
- Good resolution of signal from background
- Good control of systematic uncertainties
- ► For mass ordering and CP-violation
 - Both disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$ and appearance $(\nu_{\mu} \rightarrow \nu_{e})$ modes
 - Long baseline
 - Ability to study neutrinos and antineutrinos

The NOvA collaboration

47 institutions, 7 countries, over 200 collaborators

Argonne, Atlantico, Austin, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State, Czech Technical University, Dallas, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, Houston, IIT-Hyderabad, Hyderabad, Illinois Instute of Technology, Indiana, Iowa State, Irvine, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, NISR, Panjab, Pittsburg, South Alabama, SDMT, South Carolina, SMU, Stanford, Sussex, Tennessee, Tufts, UCL, Virginia, Wichita State, William and Mary, Winona State.

NOvA 10,000ft view

- ν_{μ} beam from Fermilab, IL
- Detector 810km away in MN
- Smaller detector onsite to measure flux before oscillations

$$\begin{split} \blacktriangleright & \nu_{\mu} \rightarrow \nu_{\mu} & \qquad \blacktriangleright & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \\ \blacktriangleright & \nu_{\mu} \rightarrow \nu_{\theta} & \qquad \flat & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\theta} \end{split}$$

- ► Precision measurements of |∆m²₃₂| and θ₂₃
- Determine the mass hierarchy
- Search for $\sin \delta_{CP} \neq 0$

- 120 GeV protons from Main Injector
- Strike graphite target
- Produce mainly π^{\pm} and K^{\pm}
- Focused by two magnetic horns
- Allow us to select charge sign for a neutrino or antineutrino beam
- ▶ 675m decay-pipe: $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- Muons absorbed by rock

NuMI performance

- 700kW design power since Jun 2017
- World's highest power neutrino beam, $\sim 4 \times 10^{13}$ protons / pulse

- ► Neutrino data from Feb 2014 to Feb 2017 8.85 × 10²⁰ POT
- ► Antineutrino data from Feb 2017 to Apr 2018 6.9 × 10²⁰ POT
- Approx 6×10^{20} POT / yr going forward

Detector technology

To 1 APD pixel

- ▶ 64% liquid scintillator by mass
- ► 4×6cm resolution, two views for 3D reco.
- ▶ 344,000 channels in 14 kton FD, on surface
- ► 300 ton ND, underground at FNAL

Near Detector

Event topologies

Very good granularity, especially considering scale
 X₀ = 38cm (6 cell depths, 10 cell widths)

Event topologies

Very good granularity, especially considering scale
 X₀ = 38cm (6 cell depths, 10 cell widths)

ND neutrinos

FD neutrinos

FD neutrinos

FD neutrinos

Neutrino vs antineutrino mode

Neutrino vs antineutrino mode

^{20/46}

Neutrino vs antineutrino mode

Principle of the ν_{μ} measurement

• Separate ν_{μ} CC interactions from backgrounds

- Long muon track with distinctive dE/dx easy to spot
- Extrapolate observed ND spectrum to make FD unosc. prediction
- Measure shape of ν_{μ} deficit in the FD

Principle of the ν_{μ} measurement

• Separate ν_{μ} CC interactions from backgrounds

- Long muon track with distinctive dE/dx easy to spot
- Extrapolate observed ND spectrum to make FD unosc. prediction
- Measure shape of ν_{μ} deficit in the FD
- ► Two flavor approx. works well here
- $\blacktriangleright P_{\mu\mu} \approx 1 \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$
- θ₂₃ ≈ 45° → almost all ν_µ expected to disappear at oscillation max.

Mixing patterns

V2

- Only a small fraction of ν_e in $|\nu_3\rangle$ (sin² 2 θ_{13})
- The remainder is split $\sim 50/50 \ \nu_{\mu}/\nu_{\tau}$ (sin² θ_{23})
- Accident? Or a sign of underlying structure?
- Is θ_{23} exactly 45°?
- ► If not, is it...
 - <45° ($|
 u_3
 angle$ more $u_{ au}$, like the quarks)
 - > 45° ($|\nu_3\rangle$ more ν_{μ} , unlike quarks)

Principle of the ν_e measurement

- Separate v_e CC interactions from beam backgrounds
 - More challenging than ν_μ CC selection
- Evaluate remaining backgrounds in ND
 - ► Intrinsic beam v_e
 - Neutral currents
 - ν_{μ} CC mostly oscillates away
- ▶ An excess in the FD is the sign of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

Why hierarchy?

- Is the electron-like state lightest?
- i.e. Does the pattern of the masses match the charged leptons?

- Are neutrinos Majorana particles ($\nu = \bar{\nu}$)?
- Observation of $0\nu\beta\beta$ would be proof they are
- Impact of IH determination: lack of $0\nu\beta\beta$ implies Dirac nature

- ► Electrons in the Earth drag on the "electron" neutrino states
- Sign of the effect opposite for antineutrinos and for NH/IH

Neutrino/antineutrino symmetry

• Does
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$$
?

- Insight into fundamental symmetries of the lepton sector
- "CP violation" described by oscillation parameter δ_{CP}

- Why is the universe not equal parts matter and antimatter?
- ► Need ppb early universe asymm.
- Existing CP-violation insufficient
- ► "Leptogenesis": generate v/v̄ imbalance, transfer to baryons

► Require neutrino **appearance** experiment to discover

Principle of the ν_e measurement

- To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- These depend differently on sign(Δm_{32}^2) and δ_{CP}

Principle of the ν_e measurement

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(△m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space

$$P_{\mu e} pprox \sin^2 2 heta_{13} \sin^2 heta_{23} \sin^2$$

Principle of the ν_e measurement

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(△m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space

$$P_{\mu e} pprox \sin^2 2 heta_{13} \sin^2 heta_{23} \sin^2$$

Event selection

- Events classified as $\nu_e / \nu_\mu / NC$ by Convolutional Neural Network
- Deep Learning technique from computer vision research
- Treat the whole event as an input "image"
- ► Improvement in performance equivalent to 30% more data

Selecting muon neutrinos

- Also have to reject cosmic rays, use containment, dir. and size
- ► Factor 10^5 from 10μ s spill window vs 1Hz beam, 10^7 from cuts
- ► Achieve 98.6% pure FD ν_{μ} CC sample, 78% efficiency

Selecting electron neutrinos

- ► Biggest background is intrinsic beam *v_e*'s
- "Wrong sign" appearing neutrinos significant in antineutrino mode
- Majority of other background contains a π^0

u_{μ} energy estimation

- Ltrk Ehad
- ► Estimate energy of selected events to trace out osc. structure
- ► Known muon dE/dx \rightarrow $E_{\mu} = f(L_{trk}) \sim k \times L_{trk}$
- Hadronic part of the event estimated calorimetrically

•
$$E_{\nu} = f(L_{trk}) + E_{had}$$

Near detector – ν_{μ}

Clear deficit in NOvA ND simulation (also seen by MINERvA)

- Clear deficit in NOvA ND simulation (also seen by MINERvA)
- Attributed to inter-nucleon correlations ("2p2h")

- Clear deficit in NOvA ND simulation (also seen by MINERvA)
- Attributed to inter-nucleon correlations ("2p2h")
- ► Enable GENIE's "empirical Meson Exchange Current" model

- Clear deficit in NOvA ND simulation (also seen by MINERvA)
- Attributed to inter-nucleon correlations ("2p2h")
- ► Enable GENIE's "empirical Meson Exchange Current" model
- Tune to match our data in $(q^0, |\vec{q}|)$ space
- Evaluate uncertainties by repeating tune on top of more-QE-like and more-RES-like simulations

ν_{μ} energy estimation

Good data/MC agreement for muon neutrino selected events

ν_{μ} energy estimation

Good data/MC agreement for muon neutrino selected events

u_{μ} resolution bins

- ► Bin into 4 equal quantiles by hadronic energy fraction
- Energy resolution varies from $\sim 6\%$ to $\sim 12\%$ between bins

Near detector – ν_e

Neutrino mode

- ν_e spectra split into low and high confidence bins
- FD spectrum will have additional "peripheral" bin
- "Decompose" ν mode to NC+ ν_{μ} + ν_{e}
- In $\bar{\nu}$, check ν contamination

Extrapolation procedure – ν_{μ}

Reconstructed Neutrino Energy (GeV)

Extrapolation procedure – ν_{μ}

Reconstructed Neutrino Energy (GeV)

Extrapolation procedure – ν_e

Extrapolation tests

Extrapolation tests

39/46

u_{μ} spectra Neutrino mode Antineutrino mode Neutrino beam Antineutrino beam **NOvA Preliminary NOvA Preliminary** FD Data FD Data Prediction Prediction 80 30 No oscillation No oscillation Events / 0.1 GeV Events / 0.1 GeV 10 20 Reconstructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV) Expect 730 w/o oscillations Expect 266 w/o oscillations

Observe 65 events

Observe 113 events

39/46

 u_{μ} spectra

Neutrino mode

Antineutrino mode

Δm^2 and $\sin^2 \theta$

Δm^2 and $\sin^2 \theta$

ν_e spectra

Neutrino mode

ν_e spectra

Neutrino mode

• Observe 58 ν_e and 18 $\bar{\nu}_e$

ν_e spectra

Neutrino mode

Expect 15 background

Expect 5.3 background

Antineutrino mode

Future

- CP-violation remains challenging for NOvA
- But could have $>4\sigma$ determination of the hierarchy!
 - Strongly dependent on true parameters (degeneracies)
 - Global best-fit is for the most favourable scenario

Conclusion

- Presented first NOvA neutrino+antineutrino results
- 4σ evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations
- ▶ Prefer NH at 1.8σ
- Exclude IH, $\delta_{CP} = \pi/2$ at $>3\sigma$
- ► Disfavours maximal mixing by 1.8σ and lower octant similarly
- 3σ sensitivity to mass hierarchy by 2020

Backup

u_{μ} details

ν_e details

ν_e details

Low PID 2017: 14

Mid PID 2017: 8

Low PID 2018: 16

High PID 2017: 35

High PID 2018: 33

Peripheral 2017: 9

Peripheral 2018: 9

Systematics

Source of Uncertainty	$sin^2 \theta_{23} (\times 10^{-3})$	δ_{CP}/π	Δm_{32}^2 (×10 ⁻³ eV ²)
Beam Flux	+0.42 / -0.48	+0.0088 / -0.0048	+0.0016 / -0.0015
Detector Calibration	+6.9 / -6.1	+0.15 / -0.023	+0.024 / -0.029
Detector Response	+1.9 / -0.99	+0.055 / -0.054	+0.0027 / -0.0034
Muon Energy Scale	+2.6 / -2.1	+0.015 / -0.0026	+0.01 / -0.012
Near-Far Differences	+0.56 / -1.1	+0.11 / -0.064	+0.0033 / -0.0013
Neutrino Cross Sections	+4.2 / -3.5	+0.085 / -0.072	+0.015 / -0.014
Neutron Uncertainty	+6.4 / -7.9	+0.002 / -0.0052	+0.0028 / -0.01
Normalization	+1.4 / -1.5	+0.031 / -0.024	+0.0029 / -0.0027
Systematic Uncertainty	+9.6 / -11	+0.21 / -0.11	+0.032 / -0.035
Statistical Uncertainty	+22 / -29	+0.9 / -0.27	+0.064 / -0.059
			52/4

NOvA Preliminary

Sensitivities

Assembly

Calibration and energy scale

- Response varies substantially along cell due to light atten.
- Use cosmic ray muons as a standard candle to calibrate 300,000 channels individually
- Use dE/dx near the end of stopping muon to set abs. scale
- Multiple calibration x-checks
 - Beam muon dE/dx
 - Michel energy spectrum
 - π^0 mass peak
 - Hadronic energy/hit
- ► Take 5% abs. and rel. errors on energy scale

Calibration

NOvA Preliminary

FD cosmic data - plane 2 (horizontal), cell 376

- Response varies substantially along cell due to light atten.
- Use cosmic ray muons as a standard candle to calibrate 300,000 channels individually
- Use dE/dx near the end of stopping muons to set abs. scale

Calibration

NOvA Preliminary

FD cosmic data - plane 2 (horizontal), cell 376

- Response varies substantially along cell due to light atten.
- Use cosmic ray muons as a standard candle to calibrate 300,000 channels individually
- Use dE/dx near the end of stopping muons to set abs. scale

Data subsets

What's new?

- 50% additional data
- Data-driven flux estimates from MINERvA¹
- Retuned cross-section model
- Detector sim. improvements (*E*_{res} : 7% → 9%)
- Using computer vision classifier for all analyses
- Analysis improvements
 - Resolution binning for ν_{μ}
 - "Peripheral" sample for ν_e

¹ Phys. Rev. D94 (2016) 092005

Sterile neutrinos

- ► Expect 83.5 ± 9.7(stat) ± 9.4(syst) see 95
- ► Set limits on *U*_{µ4} and *U*₇₄ Phys. Rev. D 96, 072006 (2017)

Particle physics confidence levels

Significance	Confidence level			
1σ	68.3%			
2σ	95.5%			
3σ	99.7%			
4σ	99.994%			
5σ	99.99994%			

Neutrino oscillations

$$\boldsymbol{P}_{\alpha\beta} = \left| \sum_{i} \boldsymbol{U}_{\alpha i}^{\star} \boldsymbol{e}^{-im_{i}^{2}L/2E} \boldsymbol{U}_{\beta i} \right|^{2}$$

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- ► Take advantage of translational invariance → convolutions

$$\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge-detection kernel

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- \blacktriangleright Take advantage of translational invariance \rightarrow convolutions

$$\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge-detection kernel

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- CNN deep neural network, inputs are the pixels of the image
- \blacktriangleright Take advantage of translational invariance \rightarrow convolutions

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- ► Take advantage of translational invariance → convolutions

CVN example

	-	generation of	ê ^{n deren}	-	Sauran .	la esta s	
-		ş de e	Surger	he and a second		Second	la e
	-				geren er	S	
	in the second	(7.5.5. ⁵)		han di sa		in de la composition de la composition Esta composition de la	far en s
	l en e						i en e
		jaar se					
-	Sector Sector		ş	les et re-	en en en		
in the second se		kan					i and

• Low- $E \nu_{\mu}$ and ν_{e} trace back to the same π^{+} ancestors

ND decomposition – Michels

- ν_{μ} CC background events have Michel electron from muon decay
- ► Also produced in ν_e CC and NC by pions, but ν_μ have \sim 1 more
- ► Fit observed N_{michel} spectrum in each bin by varying components
- ▶ ν_e and NC near-degenerate, fix ν_e to parent-reweight estimate

ND decomposition – Michels

- ν_{μ} CC background events have Michel electron from muon decay
- ► Also produced in ν_e CC and NC by pions, but ν_μ have \sim 1 more
- ► Fit observed N_{michel} spectrum in each bin by varying components
- ▶ ν_e and NC near-degenerate, fix ν_e to parent-reweight estimate

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► *O*(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► O(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► O(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – EM activity

 Find FD data cosmic rays w/ brems

ν_e selection efficiency – EM activity

- Find FD data cosmic rays w/ brems
- Remove µ leaving pure EM activity
- Run through PID in data and MC
- Very good agreement

Cross-sections

- Neutrino cross-sections poorly known
- Learn about nuclear physics
- Interpretation of other experiments
- Important for precision future
- High powered beam, fine-grained ND
- Many channels to study

Event reconstruction

- First cluster hits in space and time
- Start with 2-point Hough transform
 - Line-crossing are vertex seeds
- ElasticArms finds vertex
- Fuzzy k-means clustering forms prongs
- ν_μ analysis uses a Kalman filter to reconstruct any muon track