

Science and **Rutherford Appleton** Technology Laboratory Facilities Council

Run 3 Trigger Level Scouting at the CMS experiment

A.R.SAHASRANSU

Rutherford Appleton Laboratory

7 August 2024

A.R.Sahasransu, asahasra@cern.ch

The Compact Muon Solenoid (CMS) experiment

MUON CHAMBERS Detect Muons (µ). SOLENOID 3-momentum of Tracks HADRON CALORIMETER Jets ELECTROMAGNETIC CALO. Electrons (e) and Photons (γ) SILICON TRACKER

All charged particle Tracks

Science and Technology Facilities Council **Rutherford Appleton** Laboratory

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Reconstructed Physics Objects

Science and Technology Facilities Council

Rutherford Appleton Laboratory

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Triggering is essential at collider experiments

Science and Technology **Facilities** Council **Rutherford Appleton** Laboratory

4

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Triggering is essential at collider experiments

-

Rutherford Appleton Laboratory

A.R.Sahasransu, <u>asahasra@cern.ch</u>

7 Aug 2024

5

CMS Data Content

Sub-detector system	Run 2 (kB / event
Tracker Strips	731
Tracker Pixels	259
Hadronic Calo.	170
Electromagnetic Calo.	128
Muons System	107.5
TOTAL	1400

<u>JINST 19 (2024) 05, P05064</u>

Rutherford Appleton Laboratory

- Data content observed at peak luminosities.
- Replace the full detector data with a summary.

Reduce data: O(1 MB)/event \Rightarrow

O(10 kB)/event.

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Use the HLT reconstruction

LEVEL 1 TRIGGER

Hardware based

Very coarse reconstruction

MHZ

30

Collisions

Rutherford Appleton Laboratory

~ 100 kHz

HIGH LEVEL TRIGGER Software based Uses full detector granularity

Runs a faster reconstruction close to offline

A.R.Sahasransu, <u>asahasra@cern.ch</u>

HLT reconstruction: Muons

Efficiency measured with respect to offline muons matched to an L1 muon.

Science and Technology Facilities Council **Rutherford Appleton** Laboratory

A.R.Sahasransu, <u>asahasra@cern.ch</u>

HLT reconstruction: Muons

Efficiency measured with respect to offline muons matched to an L1 muon.

Facilities Council

Rutherford Appleton Laboratory

A.R.Sahasransu, <u>asahasra@cern.ch</u>

HLT reconstruction: Photons

Efficiency measured with offline photons matched to a scouting photon.

The scouting single photon efficiency with no other selection is at 30 GeV.

A.R.Sahasransu, <u>asahasra@cern.ch</u>

HLT reconstruction: Jets

Science and Technology Facilities Council

Rutherford Appleton Laboratory

Efficiency defined with respect to offline reconstructed jets in an unbiased sample.

Online and Offline performance is compatible.

11 A.R.Sahasransu, <u>asahasra@cern.ch</u>

What can be removed from CMS Data?

Sub-detector system	Run 2 (kB / event)	Run 3 (kB / event)
Tracker Strips	731	731
Tracker Pixels	259	259
Hadronic Calo.	170	391
Electromagnetic Calo.	128	128
Muons System	107.5	129.5
TOTAL	1400	1600

<u>JINST 19 (2024) 05, P05064</u>

- Data content observed at peak luminosities.
- Replace the full detector data with a summary.

Reduce data: O(1 MB)/event \Rightarrow

O(10 kB)/event.

12 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Just store HLT Physics Objects

LEVEL 1 TRIGGER

Hardware based

Very coarse reconstruction

MHZ

30

Collisions

Rutherford Appleton Laboratory

~ 100 kHz

HIGH LEVEL TRIGGER

Software based

Uses full detector granularity

Runs a faster reconstruction close to offline

13 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Scouting: New data format

Tracker Hits and Stubs ~ 60-70% of data / event

Calorimeter Energy **Deposits and Hits**

~ 300 kB / event

Muon system hits ~ 100 kB/event

Rutherford Appleton Laboratory

14 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Scouting: New data format

Rutherford Appleton Laboratory

ELECTRONS, PHOTONS, JETS

15 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Scouting: New data format

Rutherford Appleton Laboratory

MERIT O (10 kB) / event

ELECTRONS, PHOTONS, JETS

MUONS

TRACKS

DEMERIT

No offline processing

16 A.R.Sahasransu, asahasra@cern.ch

Rutherford Appleton Laboratory

17 A.R.Sahasransu, asahasra@cern.ch

Run 2 Scouting Physics: Dark Matter search

Observed limits on the universal coupling between a leptophobic Z' boson and quarks.

Rutherford Appleton Laboratory

18 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Run 2 Scouting **Physics: SM** physics

First observation of the decay of the η meson to 4

muons at

 $B(\eta \rightarrow 4\mu) = 3.98 \times 10^{-9}$

10

Pull

19 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Run 3 has all physics objects

Rutherford Appleton Laboratory

MERIT O (15 kB) / event

ELECTRONS, PHOTONS, JETS

MUONS

TRACKS

DEMERIT

No offline processing

20 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Rutherford Appleton Laboratory

HLT SCOUTING MODULE

Run the full HLT particle flow

Irrespective of the L1 that seeds this module

Save Tracks, μ , e, γ , jets, MET and HT

At 30 kHz

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Reco. Improvement: Pixel Tracking

- least 3 pixel hits.
 - Pixel seed is required to match to one of the primary vertex.
- Better tracking performance and code optimised for GPUs.

Laboratory

• Tracking performed at one go seeded by pixel tracks with $p_T > 0.3$ GeV and at

Reco. Improvement: Hybrid HLT farm

- 200 nodes with 2 AMD Milan 64-core CPUs and 2 Nvidia Tesla T4 GPUs each node.
- ECAL, HCAL and Pixel Track reco. (~40%) are now done in GPUs.

Science and Technology Facilities Council

Rutherford Appleton Laboratory

23

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Reco. Improvement: Hybrid HLT farm

- 200 nodes with 2 AMD Milan 64-core CPUs and 2 Nvidia Tesla T4 GPUs each node.
- ECAL, HCAL and Pixel Track reco. (~40%) are now done in GPUs.

Science and Technology Facilities Council

Rutherford Appleton Laboratory

24

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Run 3 Scouting parameters

Rutherford Appleton Laboratory

Run 384052/2024

25

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Jets/HT Scouting

L1 INPUT

 $H_{T} > 280 \text{ GeV}$ 1 jet, p_T > 180 GeV

2 jets, $p_T > 30$ GeV, $|\eta| < 2.5, \Delta \eta < 1.5,$ m_{ii} > 250 GeV

No other selection

Rutherford Appleton Laboratory

26 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Muons Scouting

New and improved displaced muon reconstruction.

Rutherford Appleton Laboratory

27 A.R.Sahasransu, <u>asahasra@cern.ch</u>

In the years to come :

Science and Technology Facilities Council

Rutherford Appleton Laboratory

29

QUESTIONS ?? MORE SLIDES FOLLOW...

Rutherford Appleton Laboratory

30 A.R.Sahasransu, <u>asahasra@cern.ch</u>

Run 2 Jets: Three Jet Invariant Mass plot

Observation of fully hadronic top quark decays in the invariant mass of three jets with QCD multi-jet background with and without a NN discriminator.

7 Aug 2024

31

A.R.Sahasransu, <u>asahasra@cern.ch</u>

Run 2 Muons: Invariant Mass plot

Di-muon invariant mass spectrum and event rate of each L1 seed obtained with the scouting stream reconstructed at the HLT with $L = 60 \text{ fb}^{-1}$.

CMS 10¹² -10¹ Events/GeV **10¹⁰** 10⁹ 10^{8} **10⁷** 10⁶ **10⁵ 10**⁴ 10³ 10²

