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• Looking for an electron recoil (ER) and nuclear recoil (NR) originating from a common vertex
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• Cost per unit volume is low


• Allows for 3D track reconstruction and resolution of 
distinct ER and NR tracks


• This is achieved through simultaneous measurement of 
visible scintillation light produced and charge collected 
at ITO anode


• We would like to simulate light and charge collection in 
order to understand the processes occurring


• We can then optimise the performance of the detector
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Why use a gaseous detector?

ITO anode: charge

Camera: light



Which gas is suitable?

• CF4 is a good choice


• Scintillates visibly with a spectrum compatible with 
MIGDAL’s CMOS camera readout


• Low atomic number of C and F means Auger 
electron/characteristic x-ray production will be well 
below 5keV threshold

And at what pressure?

• Low pressure preferable for increased track length, so we can clearly distinguish Migdal event topologies


• Low pressure also reduces photon interaction probabilities, reducing their contribution to background


• However, an intense neutron source would be required for a significant number of interactions with gas


• We have such a source at NILE!
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Adding noble gases to CF4
• Ar and Xe are already used in leading dark 

matter detectors


• The Migdal effect could increase the sensitivity 
of these experiments to lower-mass particles


• Also: Ar and CF4 interact, causing more visible 
light to be produced for a given amount of 
charge collected at the anode


• So we can lower the energy threshold without 
increasing GEM dV, and improve signal to noise 
ratio on tracks above the threshold


• Measurements suggest the effect is not present 
in Ne, with Xe yet to be investigated
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MIGDAL data: simultaneous light and charge measurement



Preliminary work
To simulate a GEM, we need:

Component Program Used

A 3D model of the GEM Gmsh

An electric field map in and 
around the GEM Elmer

Electron-gas interaction cross 
sections, gas properties Magboltz

A way to drift electrons in the 
presence of gas & E-field Garfield++
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Preliminary work
Testing the single GEM model
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Current work
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Gas gain simulations 
(charge measurement)

Simultaneous light & 
charge simulations

• Once we are confident that we are simulating charge correctly, move on to simultaneous 
light & charge



Procedure 

• Simulate an avalanche in a double GEM starting from a single electron


• Track number of electrons that make it to the anode


• Plot the distribution and find the mean


• Compare to MIGDAL data

Gas gain simulation
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Gas gain simulation
• The distribution of avalanche sizes was 

well-described by a skew-Gaussian 
distribution


• This was fitted to histograms of gain and 
a mean was found


• Simulation results agree with MIGDAL 
data to within a factor of two


• At low pressures, there is a documented 
discrepancy (~2x) between GEM gain 
simulated in Garfield++ and experimental 
measurements



Current work
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Gas gain simulations 
(charge measurement)

Simultaneous light & 
charge simulations

• The discrepancy is small


• Would be good to know if the rough shape of the light and charge simulation data is 
consistent with measurement even if the values don’t exactly match


• So we move on from charge measurement



Amedo et al, Observation of strong wavelength-shifting in 
the argon-tetrafluoromethane system. Front. Detect. Sci. 
Technol 1:1282854. doi: 10.3389/fdest.2023.1282854 


e− + Ar → e− + Ar**

Ar** + CF4 → Ar + CF*4 → Ar + F + CF*3 (2A′ ′ 2,1E′ )

CF*3 (2A′ ′ 2,1E′ ) → CF*3 (1A′ 1) + hν(630nm)

e− + CF4 → e− + CF*4 → e− + F + CF*3 (2A′ ′ 2,1E′ )

CF*3 (2A′ ′ 2,1E′ ) → CF*3 (1A′ 1) + hν(630nm)

CF4 Ar
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The bracketed symbols (e.g.  ) 
specify the symmetry and multiplicity of 
the excited state

2A′ ′ 2

Light & charge simulation
Understanding visible scintillation mechanisms



Light & charge simulation

• Detailed collision output produced from Garfield++/
Magboltz


• We can count how many collisions resulted in a given 
process


• We can also track the location of these collisions, and 
restrict tracking to areas of interest
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Collision tracking in Garfield++



Light & charge simulation

E. Seravalli, A Scintillating GEM Detector for 2D Dose 
Imaging in Hadron Therapy, PHD thesis, 2008

Relevant energy 
levels

• Energy levels identified in Magboltz (see below)


• This allows for the tracking of scintillation by tracking the number of collisions in these levels

Paschen notation 14

Tracking visible scintillation

e− + CF4 → e− + CF*4 → e− + F + CF*3 (2A′ ′ 2,1E′ )

e− + Ar → e− + Ar**



Light & charge simulation
• Assume one visible photon will inevitably be released when a collision results in CF4* or Ar** production


• Therefore, by tracking visible scintillation related collisions, we can estimate how much visible light is produced


• Plot this against number of electrons collected at the anode for different CF4/Ar ratios


• In reality, some Ar** will de-excite before interacting with CF4, so make the de-excitation probability a parameter


• Compare to MIGDAL data
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MIGDAL data



Backup Slides
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