
MC event generation tutorial

Andy Buckley
University of Glasgow

RAL Advanced Graduate Lectures
Rutherford Appleton Lab, 18 June 2025

❖ We will be running event generators via Docker
➢ Like a virtual Linux machine that you run inside your own PC
➢ VM image files are O(1 GB): download these in advance!
➢ Apologies, they can currently run slow on Mac OS

❖ Containers and volume binding
➢ You can run an image multiple times: each copy is a container
➢ By default the data from each container stays on your machine…

this eats a lot of disk space! use --rm to make it auto-delete,
or periodically docker system prune

➢ To make it easy to get data in and out of your container, make a
“portal” directory: -v /some/host/dir:/some/container/dir

❖ Rivet+Pythia+MG5_aMC@NLO image
➢ docker pull hepstore/rivet-tutorial:main
➢ docker run -it --rm -v $PWD:/host hepstore/rivet-tutorial:main
➢ Test:

rivet -h
pythia8-main144 -h

Setup: Docker images and containers

2

❖ MC generation: where theory meets experiment
➢ The fundamental pp collision, without a surrounding detector

❖ Components of a fully exclusive SHG chain
➢ QFT matrix element sampling at fixed order in QCD etc.
➢ Dressed with approximate collinear splitting functions, iterated

in factorised Markov-chain “parton showers”
➢ FS parton evolution terminated at Q ~ 1 GeV: phenomenological

hadronisation modelling. Mixed with MPI modelling.
➢ Finally particle decays, and other niceties

❖ Today
➢ hands-on tutorial with Pythia8 and MadGraph5

■ for background principles see the lecture slides
➢ introduction to running generators and studying their output
➢ generation biasing for efficient phase-space population
➢ ME/PS merged generation with extra ME jets
➢ Writing a Rivet MC-analysis code
➢ BSM model configuration and generation

MC generation

3

❖ First, get your Pythia Docker container started
➢ $ docker pull hepstore/rivet-tutorial:main
➢ $ docker run -it --rm -v $PWD:/host hepstore/rivet-tutorial:main

❖ Pythia8: shower-hadronisation generator (SHG) with many LO processes built-in
➢ Pythia 8.3 docs: https://pythia.org/latest-manual/Welcome.html
➢ We’ll use the “main93” example interface. Open a blank command file: # nano py8-top.cmnd
➢ Add the lines:

Beams:eCM = 13000
Top:all = on
Main:writeHepMC = on

➢ And run: # pythia8-main144 -c py8-top.cmnd -o TOP -n 100

❖ Examine the output
➢ less TOP.hepmc
➢ Run a basic physics analysis on it: # rivet -a MC_FSPARTICLES TOP.hepmc -H TOP.yoda
➢ View the histogram data: $ less TOP.yoda; # yodals -v TOP.yoda
➢ # rivet-mkhtml TOP.yoda -o /host/rivet-plots-top
➢ And point your (host-system) Web browser at it, e.g. $ firefox rivet-plots-top/index.html

Generator basics

4

purple = command shell

blue = generator configs

https://pythia.org/latest-manual/Welcome.html

❖ The HepMC ASCII files are very large!
➢ They waste space, and CPU due to the writing/re-reading time
➢ Useful for debugging, though

❖ Better that we pass the events to Rivet in memory instead
➢ # nano py8-top.cmnd
➢ And change to:

Beams:eCM = 13000
Top:all = on
Main:runRivet = on
Main:analyses = MC_TTBAR,MC_JETS,MC_FSPARTICLES,MC_ELECTRONS,MC_MUONS

➢ # pythia8-main144 -c py8-top.cmnd -o TOP -n 5000
➢ # rivet-mkhtml TOP.yoda -o /host/rivet-plots-top

❖ Inspect the output
➢ Do the lepton distributions make sense?
➢ The jets?
➢ What happens to the statistics at high p

T
?

More statistics = no more event files

5

❖ Let’s make some inclusive-jet events
➢ In Pythia, this just means a pp → jj ME. Everything else comes from the PS, especially ISR
➢ It does remarkably well for that (thanks to a few tricks)
➢ But mostly we use higher-order generators for the ME nowadays. Py8 is quick, though!

❖ We start with the obvious configuration
➢ # nano py8-jets.cmnd

Beams:eCM = 13000
HardQCD:all = on
PhaseSpace:pThatMin = 10
Main:runRivet = on
Main:rivetAnalyses = MC_JETS

➢ # pythia8-main144 -c py8-jets.cmnd -o JETS -n 6000 (there’s a reason for this number of events!)

❖ View the output
➢ # rivet-mkhtml JETS.yoda -o /host/rivet-plots-jets
➢ And view: what’s happened to the p

T
 tails and 3rd, 4th jet distributions?

➢ We can improve this with ME phase-space slicing and/or enhancement

Jet-event generation

6

❖ The statistics died off at high p
T

➢ The unweighted events are asymptotically distributed like the physical dσ/dp
T

➢ ⇒ far too many low-p
T
 events for our needs! Rapidly drop below systematics threshold

➢ Simple solution: stick together several runs in orthogonal slices of ME phase-space

❖ Three slices, the top-one open-ended
➢ Add a max pT

hat to py8-jets.cmnd:
PhaseSpace:pThatMin = 10
PhaseSpace:pThatMax = 50

pythia8-main144 -c py8-jets.cmnd -o JETS0 -n 2000
➢ Then a min/max pair above that:

PhaseSpace:pThatMin = 50
PhaseSpace:pThatMax = 100

pythia8-main144 -c py8-jets.cmnd -o JETS1 -n 2000
➢ And a final min-only:

PhaseSpace:pThatMin = 100
pythia8-main144 -c py8-jets.cmnd -o JETS2 -n 2000

➢ Plot and study: # rivet-merge JETS?.yoda -o JETS_SLICE.yoda
rivet-mkhtml JETS{0,1,2}.yoda:LineStyle=dotted JETS_SLICE.yoda:Sliced -o /host/rivet-plots-jets

Jet-event slicing

7

❖ The statistics work better now, and the correctly xs-normalised sum is smooth
➢ We still have falling stats in each slice, though: “sawtooth” statistical error
➢ Can we “continuously slice”? Yes! Sample from p

T
hat,n dσ/dp

T
hat, with weights 1/p

T
hat,n

➢ Since LO 2→2 process, p
T

hat is unambiguous

❖ Enhanced dijet generation
➢ Enable biasing in py8-jets.cmnd:

PhaseSpace:pThatMin = 10
PhaseSpace:bias2Selection = on

pythia8-main144 -c py8-jets.cmnd -o JETS_ENH -n 3000

➢ Pretty-printing of all methods:
rivet-mkhtml JETS.yoda:Raw:LineColor=red \
 JETS{0,1,2}.yoda:LineColor=purple:LineStyle=dotted \
 JETS_SLICE.yoda:Slice:LineColor=green \
 JETS_ENH.yoda:Enh:LineColor=orange -o /host/rivet-plots-jets

➢ Study the output. Which is better at phase-space coverage?
Compare the numbers of events generated

Jet-event enhancement

8

❖ W/Z+jets are the biggest and most CPU-consuming MC samples at the LHC
➢ Followed by ttbar, single-top, diboson, …
➢ The “classic” development lab for beyond-LO methods, because

■ Born process at 2→1 tree level; jets (and hence all Z p
T
) is beyond LO

■ colour-singlet boson is unproblematic for QCD
■ vector boson: symmetry protection ⇒ small NLO corrections w.r.t. Higgs
■ massive boson = naturally “anchored” scale choices: more stable than massless jets or photons

❖ First, let’s make a Pythia8 version, then go to MG5
➢ # nano py8-zmm.cmnd

Beams:eCM = 13000
WeakBosonAndParton:qqbar2gmZg = on
WeakBosonAndParton:qg2gmZq = on
PhaseSpace:pThatMin = 20
23:onMode = off
23:onIfAny = 13
Main:runRivet = on
Main:rivetAnalyses = MC_JETS

➢ # pythia8-main144 -c py8-zmm.cmnd -o Py-ZJ -n 5000

V+jets production

9

❖ Use MadGraph via the same image
➢ # cd /work/MG5_aMC/

bin/mg5_aMC
➢ MG5 is a fixed-order ME generator that interfaces with Pythia’s showers, decays, etc.

❖ Generate the lowest-order jet-multiplicity sample
➢ > generate p p > mu+ mu- j

> output PROC-ZJ
> launch
> … (don’t enable Pythia showering, do edit run card, run with <Rtn>)
> quit

➢ # cp -r PROC-ZJ /host/
⇒ look at diagrams and LHE event files:
zless PROC-ZJ/Events/run_01/unweighted_events.lhe.gz

➢ # nano py8-lhe.cmnd
Beams:frameType = 4
Beams:LHEF = unweighted_events.lhe.gz
Main:runRivet = on
Main:rivetAnalyses = MC_JETS

➢ # pythia8-main144 -c py8-lhe.cmnd -o MG-ZJ

V+jets production: MG5

10

Feynman diagrams will be generated
automatically in the SubProcesses
(sub)folders. You can also use the

> display diagrams
command… but not very effectively in

Docker since there’s no graphics

❖ We can also make higher-order MEs (here just tree-level)
➢ Make different-multiplicity processes, configure to merge and remove ME/PS overlaps

bin/mg5_aMC
> generate p p > mu+ mu- j
> add process p p > mu+ mu- j j
> output PROC-ZJJ
> launch
> … (edit run card, disable ‘ickkwl’ and add ptlund cut at 30 GeV, run with <Rtn>)
> quit

➢ Optional entertainment: # cp -r PROC-ZJJ PROC-ZJJBORKED ⇒ copy setup to overlap badly
cd PROC-ZJJBORKED
nano Cards/proc_card_mg5.dat
nano Cards/run_card.dat ⇒ set ickkw=0 (disables correct merging!)
bin/generate_events

❖ What’s going on???
➢ The PS makes the different multiplicities overlap in phase-space: have to avoid double-counting
➢ CKKW(L) and MLM procedures do this by phase-space weights or cuts: we’re turning them on/off

V+jets production: MG5 jet-merging

11

Add a [QCD] suffix to generate a
process at QCD NLO. Slow!!

⇒ one-loop matching with
MC@NLO; loop and legs

merging/matching
with FxFx

❖ Run Pythia on the MG5 LHE events
➢ First, let’s do it wrong, letting Pythia shower in the phase-space reserved for the ME:
➢ pythia8-main144 -c py8-lhe.cmnd -o MG-ZJJ-sum

➢ And now, with the shower merging enabled:
cp /usr/local/share/Pythia8/examples/main164ckkwl.cmnd py8-ckkwl.cmnd
Edit file: disable HepMC out, enable Rivet MC_JETS, set p

T,Lund
 cut = 30

pythia8-main164 -c py8-ckkwl.cmnd ⇐ note different Pythia command! 164 knows merging

❖ Analyse the Rivet histograms
➢ And plot the central values:

rivet-mkhtml Py-ZJ.yoda MG-ZJJ-merge.yoda MG-ZJJ-sum.yoda

➢ MG5 events put lots of weights in the LHE file, incorporating e.g. scale and PDF variations.
To plot them all, individually (hard to read, inflates the plot files):
rivet-mkhtml --with-variations MG-ZJJ-{merge,sum}.yoda
To plot with simple envelopes:
rivet-mkhtml MG-ZJJ-{merge,sum}.yoda:"BandComponentEnv=.*"
For more detailed band construction, see the tutorial

V+jets production: MEPS showering & analysis

12

https://gitlab.com/hepcedar/rivet/-/blob/release-4-1-x/doc/tutorials/multiweights_plotting.md

❖ Thanks for your time!

❖ You now know how to run two of the most popular LHC event generators
at Born and merged/matched levels

❖ And how to set up and run any UFO new-physics model

❖ And write a new Rivet analysis

❖ These are superpowers — use them wisely!

❖ And the devil is in the details: black-box mode
will only get you so far

❖ Sometimes it goes wrong, sometimes…
it’s complicated

❖ Good luck!

That’s it!

13

Backup / extras

14

❖ Just running pre-made Rivet analyses like MC_JETS would be very limiting
➢ Now we will very briefly write our own analysis code

❖ Inside your container, create a new C++ source file
➢ Rather than start from an empty file, we use rivet-mkanalysis to make a template code:

rivet-mkanalysis MYTEST
nano MYTEST.cc

➢ Book a new histogram:
book(_h["jjmass"], "jjmass", logspace(20, 1.0, 1000.0));

➢ Require and get the two leading jets, add 4-vectors, histogram the mass:
if (jets.size() < 2) vetoEvent;
FourMomentum pjj = jets[0].mom() + jets[1].mom();
_h["jjmass"]->fill(pjj.mass()/GeV);

➢ Build, run and plot:
rivet-build MYTEST.cc
rivet --pwd -a MYTEST PROC-ZJJMERGED/…/*.hepmc.gz -H mytest.yoda
rivet-mkhtml mytest.yoda -o /host/rivet-plots-mytest

Writing a custom MC analysis

15

Documentation on the code &
physics objects from here:

https://rivet.hepforge.org/doc

https://gitlab.com/hepcedar/ri
vet/-/blob/release-4-1-x/READ
ME.md

 ⇐ pick up the analysis .so from
current working directory $PWD

https://rivet.hepforge.org/doc
https://gitlab.com/hepcedar/rivet/-/blob/release-4-1-x/README.md
https://gitlab.com/hepcedar/rivet/-/blob/release-4-1-x/README.md
https://gitlab.com/hepcedar/rivet/-/blob/release-4-1-x/README.md

❖ Pythia8 has several built-in models, e.g. Z’, SUSY, XD resonances…
➢ Many are steered just via Py8 parameters — see the manual
➢ SUSY in particular requires an SLHA file: use hepstore/rivet-tutorial
➢ Set up a command file with

SUSY:all = on
SLHA:file = gg_g1500_chi100_g-ttchi.slha

➢ Run and analyse

❖ MG5 is really a generator generator: more flexible
➢ ⇒ can build new MEs for ~any UFO physics model (as can Sherpa, Herwig)
➢ E.g. a dark matter model:

> import model DMsimp_s_spin1 --modelname
> generate p p > xd xd~ j

➢ etc. DM mass, coupling can be set in the “param card” = SLHA
➢ Generate and analyse

➢ More control can be imposed by fixing new-physics couplings at
amplitude level e.g. NP==1 or ME-squared level e.g. NP^2==1

BSM physics generation

16

Since the MG5 conversion to use
Python3, you may need to run a

‘convert’ command on your UFO,
and re-import. The command-line will

advise you if this is the case

hepstore/rivet-tutorial is just the
rivet-pythia Docker image with a few

extra tutorial files in the work dir

Deprecated / broken

(MG5 3.5.9 broke “automatic” Pythia showering)

17

❖ Use MadGraph via the same image (maybe open it in a separate terminal)
➢ ($ docker run -it --rm -v $PWD:/host hepstore/rivet-tutorial:main)

cd MG5_aMC/
bin/mg5_aMC

➢ MG5 is a fixed-order ME generator that interfaces with Pythia’s showers, decays, etc.

❖ Generate the lowest-order jet-multiplicity sample
➢ > generate p p > mu+ mu- j

> output PROC-ZJ
> launch
> … (enable Pythia with 1<Rtn>, edit param files, run with <Rtn>s)
> quit

➢ # cp -r PROC-ZJ /host/
⇒ look at diagrams in the host file browser, xsec in web browser

➢ # cd PROC-ZJ/Events/run_01/
⇒ look at the LHE (and HepMC) event files:
zless unweighted_events.lhe.gz

V+jets production: MG5+Py8

18

JPG Feyn diagrams will be generated
automatically in the SubProcesses
(sub)folders. You can also use the

> display diagrams
command… but not very effectively in

Docker since there’s no graphics

❖ We can also make higher-order MEs (here just tree-level)
➢ # …

bin/mg5_aMC
> generate p p > mu+ mu- j
> add process p p > mu+ mu- j j
> output PROC-ZJJMERGED
> quit

➢ # cp -r PROC-ZJJMERGED PROC-ZJJBORKED ⇒ copy setup for broken, overlapping-process hack
cd PROC-ZJJBORKED
nano Cards/proc_card_mg5.dat
nano Cards/run_card.dat ⇒ set ickkw=0 (disables correct merging!)
bin/generate_events

➢ # cd ../PROC-ZJJMERGED
bin/generate_events

❖ What’s going on???
➢ The PS makes the different multiplicities overlap in phase-space: have to avoid double-counting
➢ CKKW(L) and MLM procedures do this by phase-space weights or cuts: we’re trying MLM on/off

V+jets production: MG5+Py8 jet-merging

19

Add a [QCD] suffix to generate a
process at QCD NLO. Slow!!

⇒ one-loop matching with
MC@NLO; loop and legs

merging/matching
with FxFx

❖ Run Rivet on the (zipped) MG5 HepMC events
➢ MG5 events have lots of weights, cf. the LHE file. Incorporating scale and PDF variations.

But MG5 doesn’t specify a default weight, so we need to identify that by hand:

➢ # rivet -a MC_JETS \
PROC-ZJ/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-ZJ.yoda

rivet -a MC_JETS \
PROC-ZJJBORKED/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-ZJJ-sum.yoda

rivet -a MC_JETS \
PROC-ZJJMERGED/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-ZJJ-merge.yoda

➢ And plot: # cp /host/Py-Z.yoda .
rivet-mkhtml Py-Z.yoda MG-Z*-filt.yoda --no-weights -o /host/rivet-plots-z

❖ Inspect the output
➢ See how the samples have different kinematics & N

jets
? And the MG5 systematic uncertainty bands?

V+jets production: post-hoc analysis

20

 ⇐ for speed / bug!

