

Useful things to know about accelerators – part l

C. T. Rogers
ISIS
Rutherford Appleton Laboratory

Accelerators - A Window on Nature

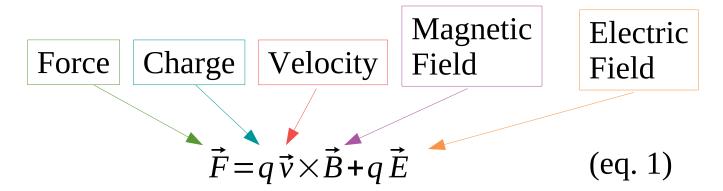
- Particle accelerators provide the source for most high energy physics experiments
 - Provide high luminosity, high energy beams for colliders
 - Provide high brightness beams for secondary particle production
 - Also key technology for life sciences, engineering, chemistry
- How do they work?
 - How can we get to high energy?
 - How can we keep the beam in the accelerator?
 - How can we get to high luminosity?
- What are the main HEP facilities in the world today?
- What might HEP facilities look like in the future?

Accelerator Components

- Most accelerators share similar components
- Main components of an accelerator
 - Bending dipoles
 - Focussing quadrupoles
 - Acceleration RF cavities
- Also
 - Vacuum
 - Diagnostics
 - Targets for secondary particle production
- First Lecture: Derive basic theory of accelerator physics
- Second Lecture: Discuss accelerator equipment and techniques

Lorentz force law

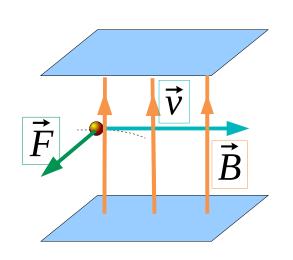
Fundamental equation for particles moving through fields

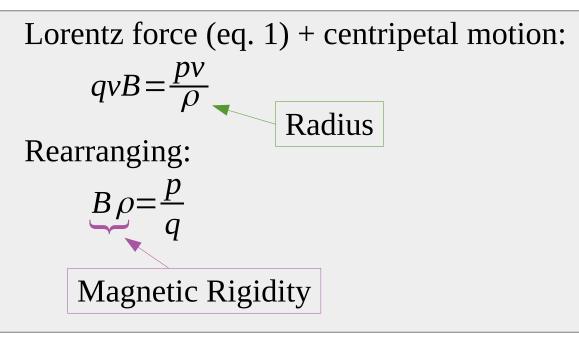


- Magnetic force is perpendicular to velocity
 - Magnetic field conserves energy
- Electric force is weaker by factor velocity
 - Magnets are better for bending and focussing

Magnetic Rigidity and Bending

- Simplest magnet "dipole"
 - Uniform magnetic field perpendicular to beam direction





- Constant force → constant curvature → circular motion
- Magnetic rigidity parameterises momentum
- Charge-to-mass ratio important when accelerating multiple particle species

Worked example - LHC

- If we wanted to accelerate, say, 7 TeV/c particles, what bending radius is required?
- Maximum dipole field around 8.3 T

$$B\rho = \frac{p}{q}$$

$$\rho = \frac{p}{qB} = \frac{7e12}{8.3 \times 3e8} = 2800 \, m$$

- Nb: LHC radius ~ 4.1 km
 - Need space for detectors, etc

Quadrupole magnets

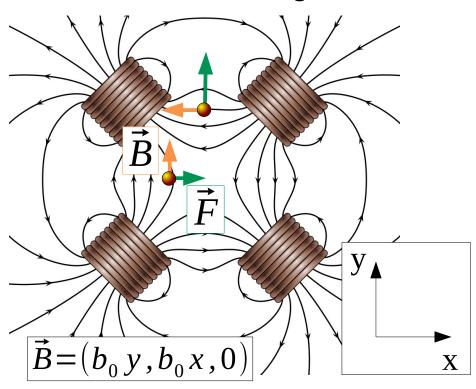
 If we only had bending magnets, particles would soon be lost from the accelerator

Need to keep the particles in the accelerator using

focussing elements

Usually use quadrupoles

- Field stronger away from beam centre
 - Like a spring or pendulum
 - Simple harmonic motion
- "F" quad focuses in x and defocuses in y
- "D" quad focuses in y and defocuses in x
- Overall focussing by alternating "F" and "D"
 - Just reverse the field



Quadrupole field - horizontal (1)

$$\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$$

$$\vec{B} = (b_0 y, b_0 x, 0)$$

Considering only p_x for now

$$\frac{dp_x}{dt} = q \frac{dz}{dt} B_y$$

Use the chain rule

$$\frac{dp_x}{dt} = \frac{dp_x}{dz} \frac{dz}{dt}$$

Combining these equations:

$$\frac{dp_x}{dz} = q b_0 x$$

$$\vec{\mathbf{v}} \times \vec{\mathbf{B}} = \begin{pmatrix} \mathbf{v}_z \mathbf{B}_y \\ -\mathbf{v}_z \mathbf{B}_x \\ 0 \end{pmatrix}$$

Quadrupole field - horizontal (2)

$$\frac{dp_x}{dz} = qb_0x$$

Definition of x-component of momentum

$$p_x = m \gamma v_x = m \gamma \frac{dz}{dt} \frac{dx}{dz} = p_z \frac{dx}{dz}$$

Substitute this definition into gives

$$p_z \frac{d^2 x}{dz^2} = q b_0 x$$

 Rearrange and wrap up constant terms in focussing strength k

$$\frac{d^2x}{dz^2} - kx = 0$$

Quadrupole field - vertical

Lorentz force law with quadrupole field definition

$$\frac{dp_{y}}{dt} = -q b_{0} v_{z} y$$

Use chain rule and eliminate vz

$$p_z \frac{d^2 y}{dz^2} = -q b_0 y$$

 Rearrange and wrap up constant terms in defocussing strength k

$$\frac{d^2y}{dz^2} + k y = 0$$

Solutions

Motion is governed by

$$\frac{d^2x}{dz^2} - kx = 0 \qquad \qquad \frac{d^2y}{dz^2} + ky = 0$$

This is simple harmonic motion – solutions are of form

$$x = x_0 \cos(\sqrt{k} z) + \frac{dx_0}{dz} \frac{1}{\sqrt{k}} \sin(\sqrt{k} z)$$

Taking derivative

$$\frac{dx}{dz} = -x_0 \sqrt{k} \sin(\sqrt{k} z) + \frac{dx_0}{dz} \cos(\sqrt{k} z)$$

For y

$$y = y_0 \cosh(\sqrt{k} z) + \frac{dy_0}{dz} \frac{1}{\sqrt{k}} \sinh(\sqrt{k} z)$$
$$\frac{dy}{dz} = y_0 \sqrt{k} \sinh(\sqrt{k} z) + \frac{dy_0}{dz} \cosh(\sqrt{k} z)$$

Transfer Matrix

Just thinking about x, the particles move according to

$$x_1 = x_0 \cos(\sqrt{k} z) + \frac{dx_0}{dz} \sin(\sqrt{k} z)$$

$$\frac{dx_1}{dz} = -x_0 \sqrt{k} \sin(\sqrt{k} z) + \frac{dx_0}{dz} \sqrt{k} \cos(\sqrt{k} z)$$

We can rewrite this as a matrix

$$\left| \frac{dx_1}{dz} \right| = \begin{vmatrix} \cos(\sqrt{k}z) & \frac{1}{\sqrt{k}}\sin(\sqrt{k}z) \\ -\sqrt{k}\sin(\sqrt{k}z) & \cos(\sqrt{k}z) \end{vmatrix} \begin{vmatrix} x_0 \\ \frac{dx_0}{dz} \end{vmatrix}$$

This matrix is known as the quadrupole's transfer matrix

$$\underline{u_1} = M_{01} \underline{u_0}$$

- Exercise what is the transfer matrix for a drift space, that is a region with no fields at all?
 - What is the force acting on the particle?
 - What is x(z) in terms of dx₀/dz and x₀
 - What is dx/dz in terms of dx₀/dz
 - Now write that as a matrix

- Exercise what is the transfer matrix for a drift space?
 - What is the force acting on the particle?
 - No force
 - What is x(z) in terms of dx₀/dz and x₀

$$x = x_0 + \frac{dx_0}{dz}z$$

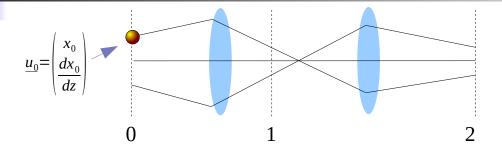
What is dx/dz in terms of dx₀/dz

$$\frac{dx}{dz} = \frac{dx_0}{dz}$$

Now write that as a matrix

$$\begin{pmatrix} x \\ \frac{dx}{dz} \end{pmatrix} = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ \frac{dx_0}{dz} \end{pmatrix}$$

Transfer Lines



- Transfer matrix defines transport through a region
- Transfer matrices can be combined by multiplication
- Say we have transfer matrices like:

$$\underline{u_1} = \boldsymbol{M_{01}} \underline{u_0}$$

$$\underline{u_2} = M_{12} \underline{u_1}$$

Then

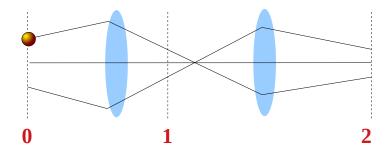
$$\underline{u}_2 = \boldsymbol{M}_{12} \boldsymbol{M}_{01} \underline{u}_0$$

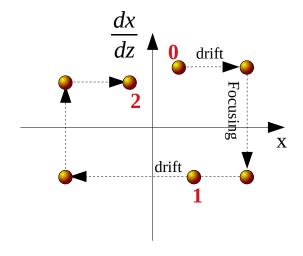
i.e. we can define a combined transfer matrix like

$$M_{02} = M_{12} M_{01}$$

Phase space

 Another instructive way to look at beam optics is by considering the phase space





$$\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$$

- There is a general rule for what transfer matrices are allowed by equations of motion
 - "Symplectic condition"
- Formally a matrix M is symplectic if it satisfies

$$\mathbf{M}^{\mathrm{T}} \mathbf{S} \mathbf{M} = \mathbf{I}$$
 Identity matrix

Where

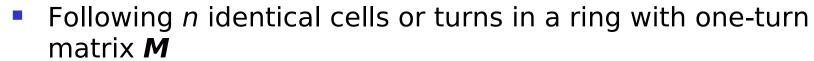
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

It can be shown that any symplectic matrix M can be written as

$$M = I \cos \mu + J \sin \mu$$

$$J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$
 with $\gamma \beta - \alpha^2 = 1$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Periodic Lattices



$$\underline{u_n} = \boldsymbol{M^n} \underline{u_0}$$

Rewrite

$$M = I \cos \mu + J \sin \mu$$

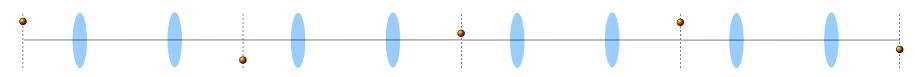
$$J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$
 with $\gamma \beta - \alpha^2 = 1$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

So $J^2 = -I$

And

$$\boldsymbol{M}^{n} = \boldsymbol{I} \cos(n \mu) + \boldsymbol{J} \sin(n \mu)$$

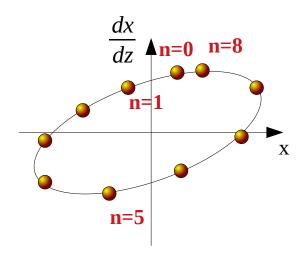
Periodic Lattices



What does this mean?

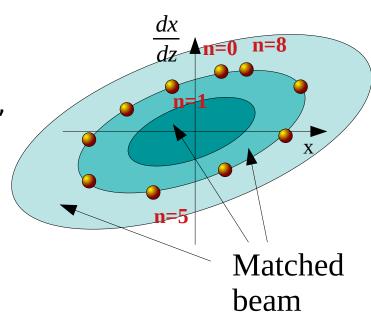
$$\boldsymbol{M}^{n} = \boldsymbol{I} \cos(n \mu) + \boldsymbol{J} \sin(n \mu)$$

- Particles move around an ellipse in phase space if Trace(M) < 2
- μ is the "phase advance"
 - Sometimes use "tune" ... $2\pi \nu = \mu$
- α, β and y are "Twiss parameters"
 - Tell us the alignment of the ellipse
- Each particle sits on ellipse area ε the particle's amplitude

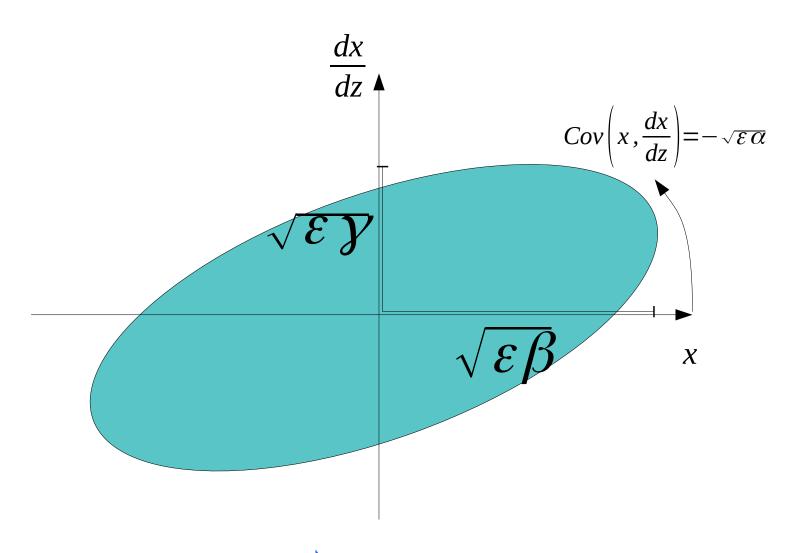


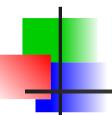
Periodic Lattices and beams

- Beam is composed of many particles
 - Particles occupy a region in phase space
- "Emittance" is area occupied by the entire beam
- Sometimes classify "RMS emittance"
 - Area occupied by ellipse 1 RMS distance from beam centre
- Low emittance is crucial for
 - High luminosity
 - Low losses



Beam ellipse





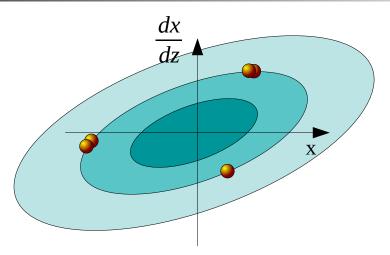
- What is behaviour of particles in phase space if
 - Trace(M) < 2</p>
 - Trace(M) = 2
 - Trace(M) > 2

- What is behaviour of particles in phase space if
 - Trace(M) < 2</p>
 - Motion is an ellipse
 - Trace(M) = 2
 - $X \rightarrow +/- X$
 - Trace(M) > 2
 - Motion is a hyperbola

Emittance Growth

- Ideally emittance is conserved, but this is not always the case
- Long list of effects that can cause emittance growth
 - Beam mismatch
 - Scattering off residual gas
 - Scattering off particles in the same beam
 - Scattering off particles in other beams (e.g. in collider)
 - Space charge
 - Resonances

Resonances



- Reminder:-
 - Tune ν is number of SHM oscillations per turn
 - Phase advance $\mu = \pi \nu$ is "angle" advanced per turn
- The beam does not behave well when

$$v_x = l + \frac{m}{n}$$
 integer

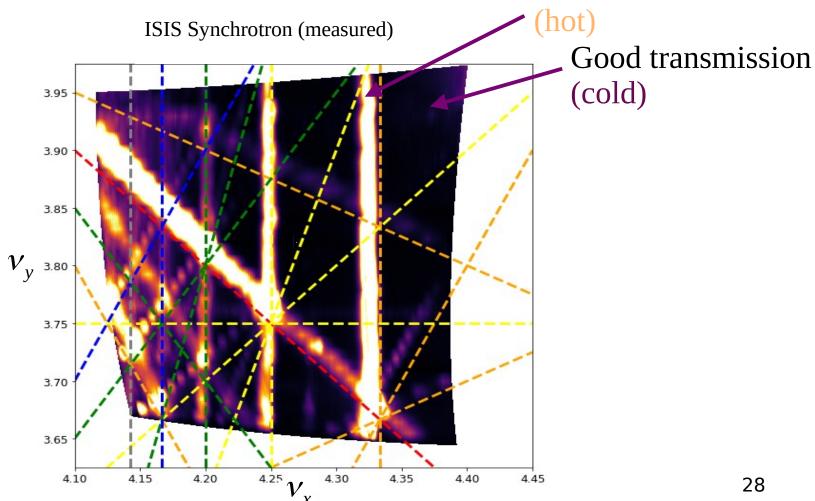
- Beam passes through the same field region every nth turn
- Imperfections in the field get amplified
- Resonance

Resonances

- Can see poor performance for $v_x = 4 + \frac{1}{3} = 4.33$
- Only a very small area in phase space is transmitted

In fact, a 2D phenomenon in (v_{x},v_{v})

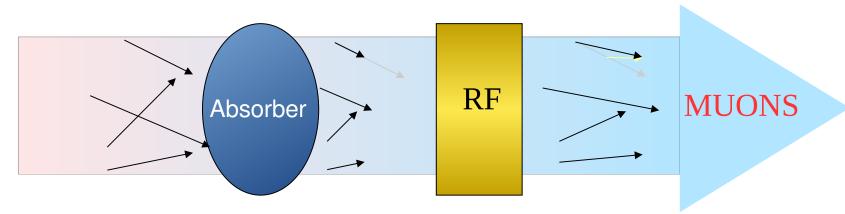
Bad transmission



Emittance Reduction (Cooling)

- Several techniques to reduce emittance
 - Synchrotron radiation cooling
 - Stochastic cooling
 - Laser cooling
 - Electron cooling
 - Ionisation cooling
- Fundamental principle is to remove "heat" from the beam using a neighbouring heat sink
 - Comoving electron beam → electron cooling
 - Comoving laser → laser cooling
 - Emission of synchrotron radiation
 - Photon emission caused by (principally) electrons bending in magnetic field

E.g. Ionisation Cooling



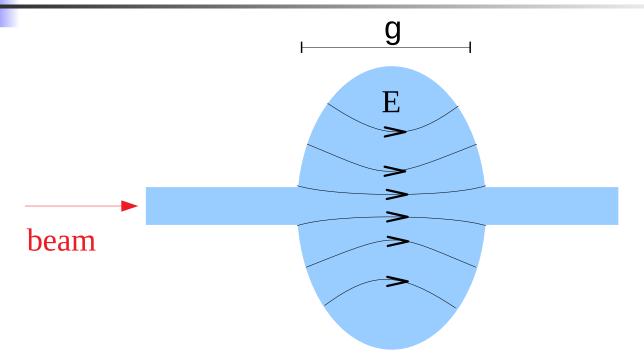
- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

Longitudinal Dynamics and Acceleration

Longitudinal Dynamics

- So much for transverse motion (i.e. x and y planes)
- What about energy and acceleration?
- Electrostatic acceleration limited by breakdown potential
 - Change in energy is given by voltage differential
 - High voltage differentials cause breakdown (sparks)
 - Practically limits electrostatic acceleration to few MeV
- To accelerate beyond MeV require oscillating electric field
- RF Cavities

RF cavity field

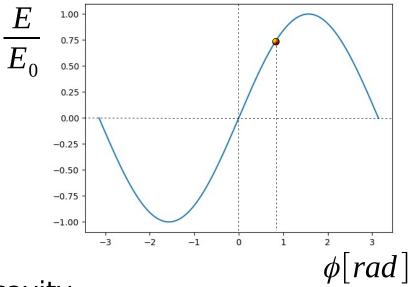


- RF cavity holds a resonating EM wave
- Recall Lorentz force law

$$\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$$

Force is in direction of motion - energy changes!

RF cavity field



In RF cavity

$$\vec{E} = E_0 \sin(\omega t + \phi) \hat{\hat{z}}$$

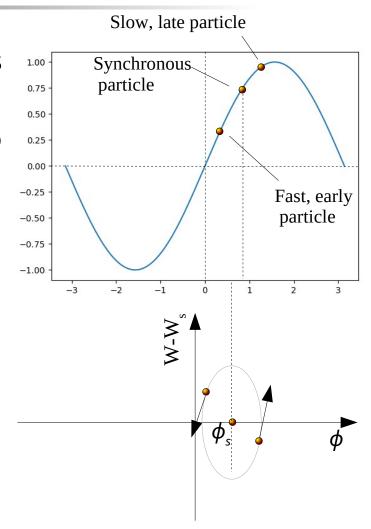
- Energy change of particle crossing at ϕ $\delta W = \int F dz = q g E_0 \sin(\phi)$
 - g is the gap length
 - Assumes gap is short so electric field doesn't change much
 - For longer gaps, can introduce an effective gap length g T
 - T is the "transit time factor" → reduces the effective gap length

Phase stability

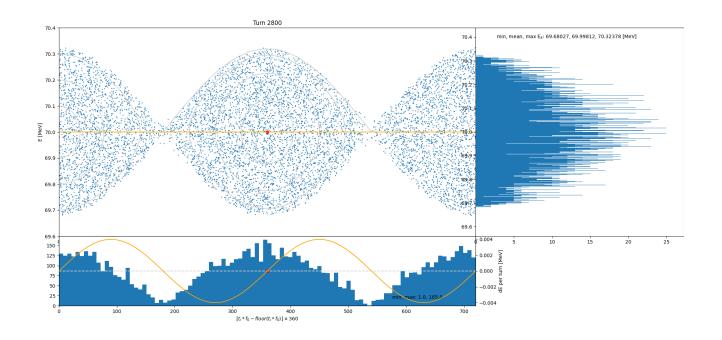
- Phase cavities so that a "synchronous" particle always crosses at phase ϕ_s
- Particle crossing at phase ϕ relative to synchronous particle

$$\delta W = q g T E_0 \sin(\phi + \phi_s)$$

- Particle arriving early
 - Fast
 - t negative
 - Gets smaller energy kick
 - Ends up relatively slower
- Particle arriving late
 - Slow
 - t positive
 - Gets bigger energy kick
 - Ends up relatively faster
- Phase stability!



RF Bucket



- RF Bucket region where phase is stable
- Harmonic number number of RF oscillations per ring turn

Dealing with momentum spread

- Momentum spread introduces a few effects
 - Dispersion
 - Chromaticity
 - Momentum compaction
- Dispersion:
 - Off-momentum particles follow a different trajectory
- Momentum compaction (rings):
 - Different path length yields different time of flight
- Chromaticity:
 - Off-momentum particles get a different focussing strength

Dealing with momentum spread

- Momentum spread introduces a few effects
 - Dispersion
 - Chromaticity
 - Momentum compaction
- Dispersion:
 - Off-momentum particles follow a different trajectory
- Momentum compaction (rings):
 - Different path length yields different time of flight
- Chromaticity:
 - Off-momentum particles get a different focussing strength

Dispersion

$$B\rho = \frac{p}{q}$$

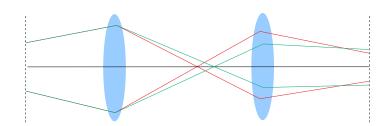
- Particles having different momentum (p) get different radius of curvature
 - Introduce dispersion D

$$D = p \frac{dx}{dp}$$

 Which is another optical function that we must make periodic

Chromaticity

 Chromaticity arises because quadrupoles focus differently for different momenta



$$k = q \frac{b_0}{p}$$

- This often limits the degree of focussing at a collision point
 - Limits luminosity
- Can deliberately enhance/reduce chromaticity by
 - Introduce a dispersion
 - Using a magnet with variable focussing strength across the aperture - "sextupole"

Questions

Review

- Dipoles are used to bend a beam rigidity is $B\rho = \frac{p}{q}$
- Quadrupoles are used to focus a beam: $k=q\frac{b_0}{p}$
- Beam in each of x and y can be characterised by 3 Twiss parameters and an emittance
- Lattices can be characterised by a phase advance
- RF cavities are used to accelerate the beam
- Introducing momentum spread, one can also define a dispersion (and its derivative with respect to z)

Finally... luminosity

- Luminosity defines the number of interactions in a collider per unit time for a given cross section
- Luminosity will increase if
 - Beam is narrower
 - Current is higher

Number of particles in each bunch

Revolution frequency

Number of bunches

$$\widetilde{L} = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}$$

Width of Each bunch

What dictates luminosity?

$$\widetilde{L} = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}$$

- Typically
 - Number of particles → space charge
 - Revolution frequency → ring circumference
 - Number of bunches → RF frequency
 - Beam width $\rightarrow \sqrt{\varepsilon \beta}$
 - Emittance (cooling?)
 - Twiss beta (final focus and chromaticity)

Next lecture...

- Accelerator equipment
- Types of accelerator
- Current facilities
- Future facilities

Backup

Consider a circular beam of radius a having uniform density

$$\rho(r) = q \frac{I}{\beta_{ral} c \pi a^2} \qquad r < a$$

Quote field around a cylinder of charge/curre

$$E(r) = \frac{1}{2\pi\varepsilon_0} \frac{I}{\beta_{rel} c} \frac{r}{a^2}$$

$$B_{\phi}(r) = \frac{1}{2\pi\varepsilon_0} \frac{I}{c^2} \frac{r}{a^2}$$

$$B_{\phi}(r) = \frac{1}{2\pi\varepsilon_0} \frac{I}{c^2} \frac{r}{a^2}$$

Apply Lorentz force law

$$\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$$

$$F_r = q\vec{v} \times \vec{B} + q\vec{E} = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} \left(\frac{I}{\beta_{rel}c} - \frac{I}{\beta_{rel}c} \beta_{rel}^2 \right) = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} \left(\frac{I}{\gamma^2 \beta_{rel}c} \right)$$

Force is defocusing

$$\frac{d^{2}x}{dz^{2}} - (k - K_{sc})x = 0 \quad \text{with} \quad K_{sc} = \frac{1}{2\pi\varepsilon_{0}} \frac{1}{a^{2}} \left(\frac{I}{\gamma_{rol}^{3} \beta_{rol}^{2} c} \right)$$

Treat SC as a perturbation

$$M_p = M M_{sc}$$

 $M = I \cos \mu + J \sin \mu$

$$\boldsymbol{M_{SC}} = \begin{pmatrix} 1 & 0 \\ -K_{SC} & 1 \end{pmatrix}$$

- Change of phase advance
 - Drive the beam onto resonances → ruin the acceptance
- Phase advance → look at Trace of M_p

$$Tr(\boldsymbol{M}_{p}) = 2\cos(\mu) + \alpha\sin(\mu) - \alpha\sin(\mu) + \beta K\sin(\mu)$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

- Consider just the $trace(\mathbf{M}_{p})$ $Tr(\mathbf{M}_{p}) = 2\cos(\mu) + \beta K \sin(\mu)$
- Consider compound angle formula

$$\cos(\mu + \delta\mu) = \cos(\mu)\cos(\delta\mu) + \sin(\mu)\sin(\delta\mu)$$
$$\cos(\mu + \delta\mu) \simeq \cos(\mu) + \sin(\mu)\sin(\delta\mu)$$

Looking at the tune

$$\delta v = \frac{\delta \mu}{2 \pi} = \frac{\beta K}{4 \pi}$$

$$\delta v = \frac{r_0 N}{2 \pi \varepsilon \beta_{rel}^2 \gamma_{rel}^3}$$

$$K_{sc} = \frac{1}{2\pi\varepsilon_0} \frac{1}{a^2} \left(\frac{I}{\gamma_{rel}^3 \beta_{rel}^2 c} \right)$$

$$\sigma(x) = \sqrt{\beta \epsilon}$$

