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Introduction

* Asyou will come to realise, | am a physicist working on ATLAS ITk strips
* As aresult most of my examples are from ATLAS and the discussion is LHC-centric

* Have tried to concentrate on generalities of detector design
* Dependent on exact use case, design priorities will change
* Generally all tracking detectors aim for the same thing!

* Tried to think of the things that | wish | had been told/realised during my PhD days

* | assume everyone will have seen lectures on silicon detectors before but will anyway start with the basics

* Please feel free to stop me and ask questions at any point!!
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Particle Tracking

* Particle tracking ubiquitous in particle physics from bubble chambers in the
1950s to large area tracking detectors at the LHC today

Bubble chamber
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Particle Tracking

* Particle tracking ubiquitous in particle physics from bubble chambers in the
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Why track particles?

* Particle tracking allows the |V ' Vertexing Impact parameters
reconstruction of the motion of §
charged particles in a magnetic field |~ _—

* Measurement of i -

—

 Electric charge (direction of bend)

* Transverse momentum (extent of bend) |~
* Direction
» dE/dx (energy loss per distance) o
* Reconstruction of
* Primary and secondary vertices S o

w4l ;

* Impact parameters HiNE S
* |dentification of T, b etc. N R ORI
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L Calorimeter impaCt pOint _— Muon momentum (GeV/c)
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Silicon detectors

Silicon detector is “just” a reverse biased diode
Charged particle ionises depletion layer

lonisation products (electrons and holes) produce a signal
* Often called the “collected charge” (CC)

aluminum readout line

isolating SiO2

p+ strip impant |

guard ring n+ backplane connection

n bulk @ created electron

O created hole |
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Silicon modules

* Need a way to take analogue signals from sensors and readout digitally
* Leads to the concept of the hybrid module

e ASICs designed to readout each detector
» Typically multiple ASICs per detector due to complexity

e Combination of sensor, ASIC and any PCB circuitry referred to as a
module

 Strip ASICs and sensors are connected together using wire-bonding
. %g;llcm aluminium wire ultrasonically welded to aluminium pads on sensors and
s

* Due to increased channel density, ASIC-sensor connection in pixels must
be done using bump bonding

Module PCB, with SMDs

/ Encapsulated wire bonds

2S module

Sensor
Solder/Indium Bumps

Local Support —
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Strips or pixels?

Diodes and collecting electrodes can be made “any shape you want”

 fe

Typically two options are used:
1. Approximately square sensor elements O(100)um x O(100)um — “PIXELS”
2. Long, thin sensor elements O(2)cm x O(100) um — “STRIPS”

Each have their own advantages and disadvantages

e\
o=

IR

. NAAAAAN

* Pixels deployed at low radius, strips at high radius P2 ¥ 1
Pixels Strips

High resolution in both directions High resolution in only one direction*

High data rates required to readout Lower data rates required to readout

Lower material budget (fewer layers per space point) Higher material budget

High power density Low power density

Expensive when covering large areas Effective way of covering large areas of silicon

* silicon can be processed on both sides or sensors placed back-to-back
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Something in between?

* At what point do strips and pixels meet? high transverse /
L. momentum
e This is the CMS upgrade PS module E
 Strip detector on one side with 2.5cm strips 31 “
* Macropixel sensor on other side with 1.5mm “macropixels” Y wrap
. / low transverse
* A true hybrid module!! 4 momentum
Strip
— sensor
readout Opto-hybrid
hybrid
\ Strip readout
L b chlps(SSA

HV backplane \\;
connection - L —d

Kapton
8 isolators |\ .=

Power hybrid

. AI-CF spacers / (

Pixel chips ~~ i

200um thick 550pm thick
CF baseplate CF stiffeners
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Signal and noise in silicon

Nol SE

NUMEEL  of EVENTS

500 Men/

DEPOSITED  (MARGE
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Signal and noise in silicon

 Thermal noise from random
[ thermal motion of charge carriers
e Shot noise from random
fluctuations in current

No| SE * Flicker (1/f) noise from eg.
imperfections in the material
e Cross-talk

\° Interference
* etc. etc. etc.

NUMBEL  oF EVENTS

500 Men/

DEPOSITED  (MARGE
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Signal and noise in silicon

NUMEEL  of EVENTS

- ATLAS Prelim 10*
E Good Pixels=4 -, . 5i

dE/dx (MeV g cm?)

Nol SE
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Signal and noise in silicon

RE

NUMBEL  oF EVENTS

—dE /dx (MeV g-lcm?)

No| SE
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Binary readout

INCIDENT SENSOR PREAMPLIFIER PULSE ANALOG TO DIGITAL
RADIATION SHAPING DIGITAL DATA BUS
CONVERSION

e [T IS

* Typically do not readout the analogue pulse shape

* Instead read out digitally
* Above “analog to digital conversion” just a simple comparator to a threshold voltage

* Only information leaving the detector is a hit (1) or lack of hit (0)
* Was there a pulse above the set threshold?
 Sometimes can include timestamp or time over threshold (ToT) value
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Thresholds

S
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Threshold scans

* |n order to understand the behaviour of the detector can perform threshold
scans

* Measure the occupancy as a function of threshold

* This can be done in three cases:
* No injected charge (“noise occupancy”)
* Injecting a calibration charge generated within the readout ASIC
* Injecting charge into the sensor using photons or ionising particles

29,

OMTPM ) N&I@M’ dx

Hhetsh ol
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A threshold scan

ACLIPANCY

Sign) AL

NOISF

THEESHD LD
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A threshold scan

75 /1504 Differential of the noise occupancy
Z curve is the Gaussian noise profile
&

D)

N/

O

S/gn) AL

Differential of the signal S-curve is the convolution
« ofthe signal shape (Landau) and Gaussian noise

THEESHD LD
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Radiation damage

» Radiation damage can affect both
sensors and readout electronics

* Bulk damage from Non lonizing Energy

Loss (NIEL)

e Change of effective doping concentration

(T Viep)

* Increase of leakage current (M noise)
* Increase of charge carrier trapping ({,CC)

* Surface damage due to Total lonising

Dose (TID)

* Charge build-up in oxide or Si/oxide

interface (MC,

nterstrip)

e Charge build up in transistors in readout
chips (T noise, T current, change in tuning)
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Radiation effects

NUMBEL  oF EVENTS

DEPOSITED  (MARGE
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Radiation effects

ACLIPANCY

THEESHD LD
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How to set the threshold

1 S/N=35.2

* Detector performance requirements derived £ 1\ ! '
from physics simulation (efficiency) and g 09 b
system considerations (noise) 08" | !
* Efficiency must be high enough to allow 07r | .
reconstruction of tracks TE -
* Noise must be low enough to not saturate the 0.6— _
readout of the detector 055

* Noise must be low enough to not explode the track = ' N
reconstruction time 0.4 ,

* For example, ATLAS ITk strips targets 03 ! : J10°
* Efficiency > 99% 02 ! ' -

* Noise occupancy <1073 o | ! 510°
* Approximately maps to S:N > 10:1 = | | | | o | .

00 | | II\O.SI 1 11 1 | |1 I15I L1 \2\ L1 \25I | | 13 | |1 I35I L1 \410—7
Charge [fC]
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How to set the threshold

* Detector performance requirements derived
from physics simulation (efficiency) and
system considerations (noise)

 Efficiency must be high enough to allow
reconstruction of tracks

* Noise must be low enough to not saturate the
readout of the detector

* Noise must be low enough to not explode the track
reconstruction time
* For example, ATLAS ITk strips targets
* Efficiency 2 99%
* Noise occupancy <1073
* Approximately maps to S:N > 10:1
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Calibrating the detector

Known calibration charges can be deposited
into the front end

Achieved online by injection capacitors within

each channel which can be discharged into the
front-end

* The 50% occupancy point of the S-curve obtained
when injecting the signal equates to the detector
response to injected charge (median)

The width of the S-curve equates to the detector

(OCLUPANCT

noise assummﬁ that the noise on the injected
charge is sma
50%

— \

“vt50” THeLS Hol >
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Calibrating the detector

\NTSO

Gradient of the “response curve” gives the gain

Combining this with online noise
occupancy scans allows you to
decide what threshold to set
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Timing

* Importance of timing varies strongly on the
detector and environment

* Unambiguous association of a track to a given bunch
crossing (25ns)

e <30 ps can allow resolution of vertices in time enough
to separate primary and secondary vertices

e About 9mm at the speed of light

* Note that really high speed requires more “exotic’
technologies such as Low Gain Avalanche
Detectors (LGADs) not discussed here

* Other time-related information can be extracted:
* Time over threshold (ToT) to measure deposited charge
* Time stamping to measure Time of Flight (ToF)
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Timing

Timewalk must be small enough to prevent timing
ambiguities eg. ATLAS ITk strips require £ 16 ns

timewalk between 0.75 fC and 10 fC signals with a
Time over threshold (ToT) and/or threshold of 0.5 fC

timestamping can add useful extra

information to a hit
To remove effects of timewalk on

timestamps a second (lower) threshold can
be used to generate the timestamp

VoLTAGE AT CoMPALAToIR

TIMEULA
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Tracking detector requirements

* High granularity
* High data rates

The smaller the pixel size, the better the resolution:

p/2

2
* Fast response = / i
. —p/2
* Low material :
o High st3 bility Fast collection time important at high rates (10s of ns)
* Low noise -> Even faster response time (10s of ps) allows time-based
e Low power separation of tracks for improved background rejection
e Radiation tolerant Reducing material reduces multiple scattering
¢ Simple Lower noise means you can pick-up smaller signals
¢ Cheap! ' Low power means less copper needed to deliver power
o Easy to build and less cooling required
° Easy to maintain Detector must satisfy requirements throughout lifetime
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How do we build modules?

* Typically two routes to building modules

Industry partners
In house at institutes

* Productions seem big when you are in the midst of it (ITk strips contains 17,888 modules) but this is
small fry to industry

e Our requirements often very different from “everyday” industry

Harsh radiation environment
10+ year lifetime

Stringent quality control
High vyield, low cost

* As a result much of production is done in house which comes with its own challenges

Requires high skill level personnel

Many institutes needed to build enough parts in the required time eg. 21 institutes world wide in 9 countries for ITk
strips

Cross calibration of institutes (and funding agencies!) is complex

Many automated machines are expensive so simplicity is key

Have to ensure that everyone is building (and adhering) to the same specifications/procedures
Parts must be sent international between sites (logistics and customs!)
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Module and tooling examples (glue is king!

Wire-bonds

HCCStar DC-DC converter

Wire-bonds

Glue

Sensor

~97mm
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Power
board

ABCStar

~97mm

Al-CF

bridges .

Precision
alignment
stops

32

Sensor

Flex
readout
/ .

CF stiffener for
service hybrid

Strip

sensors Readout chips

(CBC)

Al-CF
bridges

Service
hybrid

550 microns thick

HV backplane Kapton CF stiffeners

connection isolators



What takes so long?

* The assembly and wire-bonding of modules is only a small part of the
process

* Quality control and assurance take a lot of time:

e Glue amounts/thicknesses must be checked on all modules

* Functionality of ASICs and sensors must be tested before they are used
Quality of hybrids from industry must be tested before use
Positioning of ASICs, hybrids, sensors must be checked
Hybrids/modules must be tested to ensure they perform as expected
Hybrids go through burn-in
Modules go through thermal cycling
Subset of components get irradiated to confirm suitability

* All of this is to convince ourselves (and funding agencies) that what we are
building is fit for purposes and fulfils the specifications
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How do we integrate modules into a detector?

* There are multiple ways to integrate modules into a detector
* Modules act as a standalone entity which gets integrated directly onto a structure
* Modules get integrated onto a “local support” structure which then goes into the full structure
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How do we integrate modules into a detector?

* There are multiple ways to integrate modules into a detector
 Modules act as a standalone entity which gets integrated directly onto a structure
* Modules get integrated onto a “local support” structure which then goes into the full structure
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Local support

, -« Readout ASICs

Polyimide Hybrid ————>

]
, <——— Silicon Sensor

Polyimide Bus Tape —>i

- Carbon Fibre

Carbon fibre Facesheet
closeouts >
(C-channels)

High Thermal Conductivity Foam Carbon Fibre Honeycomb Titanium Cooling Tube

* The local support concept comes into its own as the detector size increases
* Without it, there is a power and fibre optic cable per module
* With it, a single power/fibre connection can service a much greater area of detector
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How do we service a detector?

T4 L L B B B B B BB
s ., ATLAS
é’ STE%EIectricaICabling Simulation
a [ ==== Titanium Cooling Pipes
. . . . c I Support Structure ID Run 2
* Bringing in services to a detector can be one of ¢ ‘" rwowe |
the biggest issues for material budget € o BERBwnrer
 Cooling pipes i3 :
e Support structure (not strictly “service”) " __ .
* Power cables o O e
e Data cables v A R R A AR
2 18 U8 potch panel ATLAS Simulation —
(] PatCh panels %1_6;§$!tect_ricalgabl!ingp
. ofe g 1.43— = Sluz::rrtn St:i:z?e o | ITk Inclined Duals
* It’s one thing to have perfect low mass silicon S 1op precme
E 15_MBeamPipe

detectors, it takes a lot more engineering to cool

them, power them and hold them stable!
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Powering

* Two main ways to reduce material in cabling
1. Serial powering
* Modules powered in series with current source
* Total voltage required is N.V
e “Low” currentin cables results in low mass
 BUT

* Modules sit at different voltages which can be challenging for
communication

* Sensors typically get HV power in parallel -> V,,,,

* Must be a way of bypassing modules otherwise one dead module
takes out many (shunts)

2. DCDC powering
Module powered in parallel with voltage source
* Recover resultant high current with DC-DC converters
e Converters can have 10:1 step in V with 70% efficiency
e Converter means “low” current in cables results in low mass
« BUT

* DC-DC converter is generally high mass component

* Converter includes fast switching which can lead to noise in the
module
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A few words on layout

* Discussed a lot of engineering here but ultimately what we care about is physics
and how tracker performance affects physics analysis

* Ultimately this comes down to simulating layouts and performing analyses on
Monte Carlo to see what layouts work best

* Always a collaborative effort between the physics simulation and engineering
design

* A few things to keep an eye on when designing a layout:
* d,resolution

Z, resolution

* p,resolution

* Hemiticity

Tracking efficiency

* Redundancy
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d,and z,

Both improved by a low radius first layer (and optimised second layer radius)

7
reavishinphed
brack.
4
— Fhme l.f’EA"L&%
oL
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Secondary vertex identification
-> improved by ¢ resolution

40
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Pile-up vertex identification
-> improved by z resolution



p.resolution

* For best p; resolution want to measure
the sagitta, S, as well as possible
* p;=100GeV,B=2T,L=1m
* $=0.75mm

e Measurement improved by
e Strong magnetic field

¢ resolution

Large number of hits on track

Minimal scattering

Long lever arm
e Distance between first and last hit
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A full layout
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A full layout
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A full [ayout

1400 —ATLAS Simulation Strips at higher radius

_ Inclined Duals
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A full [ayout

Inner layer close to beam

for impact parameters
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A full [ayout

1400 —ATLAS Simulation Strips at higher radius

Up to O(15) hits per

_ Inclined Duals track for redundancy

and p; resolution
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The Realities of Designing/Building a Detector

* Each time you ramp up the number of things you are building or testing, you invariably
find rarer and rarer “effects”

* Throughout R&D and early production there is a lot of problem solving
* Some problems get solved quickly, some take a bit longer!!

* Great opportunities to learn new skills and play with fun toys

Readout PCB PR
Si Strip
Sensor

L0]

Readout PCB

»

‘ ’." | ..’, p_’.’)
Q\\‘.: ". :
» \‘“:":"

Glue Glue

Pattern | . Pattern
(approx.) . pony X (approx.) . i
weak Option #1: Hysol Option #2: Interposers
. -» . 4
R N
Power Board I I . I — — ﬁgfﬁ'ﬁﬁ
Height s I I . I I .

Hysol (igid)
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The realities of running a detector

Monitoring things you expected...
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The realities of running a detector

... and discovering those you didn’t
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to have anomalous current when tested
7/ Tested workin BROKEN J HIGH CURRENT
. Number of Tested working with y 9
Pixel Names G Tested Broken High Current with normal
9 current % with respect td] % with respect to
total total working
TOTAL "BROKEN" | "HIGH CURRENT" "GOOD"

BPIX-Bpl 208 4 48 156 19 235
BPIX (+Z, Near) P

BPIX-Bml 208 10 48 150 4.8 242
BPIX (-Z, Near) "

BPIX-B 2 1 7 12 . A
BPIX (+7. Far) pO 08 3 0 5 6.3 35.9
BPIX (-Z, Far) BPIX-BmO 208 11 70 127 53 35.5
EPIX (+Z. Near) FPIX-Bpl 96 7 41 48 7.3 46.1
EPIX (-2, Near) FPIX-Bml 96 7 34 55 7.3 38.2
FPIX (+2, Far) FPIX-BpO 96 9 23 64 9.4 26.4
FPIX (-Z. Far) FPIX-BmO 96 6 22 68 6.3 24.4
BPIX - not connected to modules 32 2 8 22 63 %7
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Challenges of the future

Exp. LHC HL-LHC SPS FCC-hh FCC-ee CLIC3 TeV
Parameter
Fluence [nes/cm?/y] N x 10 1016 10Y7 10% - 107 | <10%° <10
Max. hit rate [stcm™] 100 M 2-4G™) 8G ™) 20G 20 M 77 | 240k
Surface inner tracker [m?] 2 10 0.2 15 1 1
Surface outer tracker [m?] 200 200 - 400 200 140
Material budget per detection | 0.3%7-2% | 0.1%"7-2% | 2% 1% 0.3% 0.2%
layer [Xo]
Pixel size inner layers [um?] 100x150- ~50x50 ~50x50 25x50 25x25 <~25x25

50x400

BC spacing [ns] 25 25 >10° 25 20-3400 | 0.5
Hit time resolution [ns] <~25-1k”) 0.2"-1k” | 0.04 ~1072 ~1k ") ~5

*) ALICE requirement **) LHCb requirement ***) At Z-pole running ****) max. output rate for LHCb/high
intensity flavour experiments: 300-400 Gbit/s/cm?

* Hadron colliders e Lepton colliders
* Radiation levels < 10*® n_,/cm? * Small single point resolution £ 3 um
* High hit rates * Very low material budget < 0.2% X, / layer

* Precision timing <5 ps
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(D)MAPS/CMOS?
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Examples of MAPS in HEP

STAR inner tracker (2014)

Beam pipe

scintillating A58 )
fibres , //

o R o
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Want to learn more?
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