Automation and Optimization of Laser-Driven Ion Accelerators

Matthew Streeter Centre for Light Matter Interactions Queen's University Belfast

THE ROYAL SOCIETY

Automation and Optimization of Laser-Driven Ion Accelerators

- Automation of laser driven proton acceleration
- Real-time Bayesian Optimisation of accelerated proton spectrum
- Stable low-divergence proton beams from Liquid Sheet targets

Automation and Optimization of Laser-Driven Ion Accelerators

- Automation of laser driven proton acceleration
- Real-time Bayesian Optimisation of accelerated proton spectrum
- Stable low-divergence proton beams from Liquid Sheet targets

Target Normal Sheath Acceleration

Automated experimental setup for closed-loop operation

Automation and optimisation applied protons acceleration

- Experimental on sheath acceleration of proton beams (PI C.A.J. Palmer QUB)
- Applied similar control system and optimisation algorithm as in LWFA experiment (R. J. Shalloo, et al. Nature Comms. 11, 6355 (2020)).
- Used tape target to shoot at 1-5Hz (Developed by N. Xu Imperial College London)

Xu *et al.,* "Versatile tape-drive target for highrepetition-rate laser-driven proton acceleration." HPLSE. 2023;11:e23. doi:10.1017/hpl.2023.27

Input laser energy 450 mJ

Loughran et al. "Automated control and optimisation of laser driven ion acceleration" HPLSE, 1-11. 2023 doi:10.1017/hpl.2023.23

Multi-dimensional grid scans

• Optimization of proton beam properties over complex multidimensional parameter space a real challenge

Loughran et al., HPLSE (2023)

Automation and Optimization of Laser-Driven Ion Accelerators

- Automation of laser driven proton acceleration
- Real-time Bayesian Optimisation of accelerated proton spectrum
- Stable low-divergence proton beams from Liquid Sheet targets

Bayesian optimisation using Gaussian process regression

0.5

• Acquisition Function: Uses the model to calculate where in parameter space to sample next.

 Optimisation: Through successive sampling increase the accuracy of the model and try to find the optimum.

Input laser energy 260 mJ 3-Ŧ Ŧ 2 5-a) b) *γ* [μm] 0

Bayesian Optimisation finds better combination of defocus and aberrations

- Modelling required a feedback system to obtain ٠ more accurate input parameters
 - Biggest issue was drive positioning •
- Final focal spot shows combination of ٠ aberrations yields maximum proton beam energy

Loughran et al. "Automated control and optimisation of laser driven ion acceleration" HPLSE, 1-11. 2023 doi:10.1017/hpl.2023.23

Automation and Optimization of Laser-Driven Ion Accelerators

- Automation of laser driven proton acceleration
- Real-time Bayesian Optimisation of accelerated proton spectrum
- Stable low-divergence proton beams from Liquid Sheet targets

Novel water sheet as a potential kHz ion source

- Liquid sheet nozzle developed by SLAC
- Implemented in Gemini TA2 with 240 mJ laser energy
- Target thickness tunable from 100s nm to few microns

Novel water sheet as a potential kHz ion source

Longitudinal probe at t = +670 fs

Observed greatly enhanced proton beams compared to tape target

40

100

tape

water

7

8

Observed greatly enhanced proton beams compared to tape target

Remarkable stability in beam profile over 100s of shots

Simulations using simulated neutral vapour density profile

Simulations using simulated neutral vapour density profile

10

Large database of results generated from experiment

Thank you again to our collaborators and to you for your attention

QUB: B. Loughran, M. Borghesi, C. Hyland, O. McCusker, D. Margarone, P. Parsons, M. J. V. Streeter,.

CLF: H. Ahmed, S. Astbury, N. Bourgeois, S. Dann, T. Dzelzainis, J. S. Green, C. Spindloe, D. R. Symes (+ the laser and engineering teams + C. Armstrong).

Imperial College London: N. P. Dover, O. Ettlinger, G. Hicks, N. Xu, Z. Najmudin.

SLAC National Accelerator Laboratory: C. Curry, M. Gauthier, G. Glenn, F. Treffert, C. Parisuana, S. Glenzer,

Strathclyde University: R. Gray, M. King, P. McKenna.

ELI Beamlines: V. Istokskaiia, L. Giuffrida.

University of Michigan: S. Dilorio, M. Balcazar, A. G. R. Thomas.

