WP6 - Design & Integration: Status

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting

2nd September 2024

- Stage 1 update (me)

- Stage 2 FFA design update (Ta-Jen)

- Engineering & Integration (Clive)

Overview: Layout

- Locations and key dimensions defined :
 - Gabor lens
 - Arc magnets
 - RF cavities
 - Collimators
 - Corrector magnets
 - Vacuum valves
 - Wall current monitors

- Profile monitors
- Shielding walls
- Radiation shutters
- Octupole
- Beam dump
- Stage 2 switching magnet

ROYAL HOLLOWAY UNIVERSITY

Overview: Key Parameters

Parameter	Value/Range	Unit
Laser Parameters Power Energy Pulse length Rep. rate Proton Energy Ion Energy	100 2.5 25 10 15 3.77	TW J fs Hz MeV MeV/u
Proton & Ion Capture Beam Divergence at design energy Gabor Lens effective length Gabor Lens physical length* Cathode Radius Maximum Voltage Number of Gabor Lenses* Alternative technology: solenoid length Alternative technology: solenoid max field	11 0.857 1.157 0.0365 65 2 1.157 1.4	degrees m m m kV m T
Stage 1 Beam TransportNumber of Gabor lensesNumber of re-bunching cavitiesNumber of collimatorsArc bending angleNumber of bending magnetsMaximum dipole fieldNumber of quadrupolesMaximum quadrupole fieldNumber of octupolesBeam pipe radius	5 2 2 90 2 0.55 6 0.65 1 0.0365	Degrees T T m

Parameterised Source Distribution

- LhARALinearOptics
 - K. Long, M. Maxouti, N. Dover
 - Code for modelling LhARA beam lines
 - Optics, losses, particle source
- Angular distribution generated as a cone centred on the normal to the foil surface.
 - The opening angle of the cone taken from:

$$\sigma_{\theta_S}(E) = 20^\circ - 15^\circ \frac{E}{E_{max}}$$

- Low KE angle taken to be 20°, linearly decreases such that angle at E_{max} is 5° (based on [1]).
- The distribution of the polar angle, θ_{s} , approximated as Gaussian
- 11° at 15 MeV (25 MeV E_{max})

Parameterised Source Distribution

- KE spectrum from [2], unable to predict cut-off KE:

$$\frac{dN}{dE} = \frac{n_{e0}c_s t_{laser} S_{sheath}}{\sqrt{2ET_e}} \exp\left(-\sqrt{\frac{2E}{T_e}}\right)$$

 $v^2 r$

- Model in [3] has cut off given by:

 $\mathbf{\Gamma}$

$$E_{max} = X^{-} E_{i,\infty}$$

$$\frac{t_{laser}}{t_0} = X \left(1 + \frac{1}{2} \frac{1}{1 - X^2} \right) + \frac{1}{4} \ln \left(\frac{1 + X}{1 - X} \right)$$

- Probability of particle generated in E -> E+dE:

$$\begin{split} \delta \mathcal{P} &= g\left(E\right) \delta E \qquad g(E) = \frac{1}{\mathcal{N}} \frac{dN}{dE} \\ G(E) &= \int_{E_{\min}}^{E_{\max}} g(E) dE \\ G(E) &= \frac{2}{\mathcal{N}} \frac{n_{e0} c_s t_{laser} S_{sheath}}{\sqrt{2T_e}} \sqrt{\frac{T_e}{2}} \left[\exp\left(-\sqrt{\frac{2E_{\min}}{T_e}}\right) - \exp\left(-\sqrt{\frac{2E}{T_e}}\right) \right] \end{split}$$

Parameter	Value	Unit
σ_x	4	μ m
σ_y	4	μ m
$\cos heta_Sert_{ m min}$	0.998	
E_{\min}	1.0	MeV
$E_{ m max}$	25.0	MeV
nPnts	1000	
Laser power	2.5e-15	W
Laser energy	70.0	J
Laser wavelength	0.8	μ m
Laser pulse duration	2.8e-14	s
Laser spot size	40	μ m
Laser intensity	4e+20	J/m^2
Electron divergence angle	25.0	degrees
RMS θ_S at $K = 0$ MeV	20	degrees

15

degrees

ROYAL HOLLOW<u>AY</u>

Scaled slope of RMS θ_S versus K

- [2] J. Fuchs, P. Antici, et al.," Nature Physics 2 (01, 200(
- [3] J. Schreiber, F. Bell, et al., Physical review letters 97 (08, 2006) 045005

LhARA Linear Optics

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Reduced Divergence Comparison

- Test: theta distribution reduced by factor 4

Stage 1 Nozzle

hybrid Accelerater for Badiobiological Applications

- Methodology
 - Generate beam (LLO)
 - Track 5cm
 - 2mm radial filter
 - Track 5cm with space charge
 - 2.87mm radial filter

Transmission (%)	Nozzle Entrance	Nozzle Exit
OSIRIS SCAPA Simulation,	88.7	68.0
Parameterised Beam, $\theta_s = 11^{\circ}$	7.9	4.1
Parameterised Beam, $\theta_s = 2.75^{\circ}$	87.5	55.9

Beam Property	OSIRIS SCAPA Simulation		Parameterised Beam, $\theta_s = 11^\circ$		Parameterised Beam, $\theta_s = 2.75^{\circ}$	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
TWISS α	-199	-209	-355	-357	-341	-342
TWISS β (m)	19.65	20.60	35.35	35.51	33.89	33.93
Emittance (m rad)	8.53e-08	8.11e-08	5.91e-8	5.87e-8	5.77e-8	5.75e-8
Beam Size (m)	1.28e-03	1.28e-03	1.43e-3	1.43e-3	1.39e-3	1.40e-3

Stage 1 Beam at the Nozzle Exit

ROYAL HOLLOWAY

- Final 15 MeV ± 2% beam for particle tracking simulations
- Small differences in beam properties depending on particle count (% level)
 - Good agreement at nozzle entrance likely a space charge effect.

Stage 1: Capture and Energy Selection

Solenoid (%)	SCAPA OSIRIS Simulation		Theta S = 11		Theta S = 2.75	
	KS (m⁻¹)	B (T)	KS (m ⁻¹)	B (T)	KS (m ⁻¹)	B (T)
GL1	2.4917	1.4	2.4917	1.4	2.4917	1.4
GL2	1.0187	0.5724	1.0168	0.5713	1.0175	0.5717
GL3	1.4485	0.8138	1.4486	0.8139	1.4486	0.8139

- Flexibility preserved for delivering 1-3 cm spot sizes.

Gabor Lens Strengths

Beam Size , 2 σ diameter (cm)	Solenoid 4 B Field (T)	Solenoid 5 B Field (T)	Solenoid 6 B Field (T)	Solenoid 7 B Field (T)
1.0	0.7727	0.8222	4.466e-03	1.3746
1.5	1.0893	0.7576	1.1466	0.0382
2.0	1.1654	0.7032	0.9633	0.2220
2.5	1.1491	0.7637	0.8972	0.2634
3.0	1.2804	0.6017	0.7816	0.2048

Stage 1 Optics for Stage 2 Operation

- Challenges meeting baseline injection line beam parameters
 - Emittance ~4.3e-6, beta of 50m = 1 sigma beam radius of 1.46 cm.
- Solutions prioritising alpha = 0

ROYAL HOLLOWAY

Solution	Solenoid 4 B Field (T)	Solenoid 5 B Field (T)	Solenoid 6 B Field (T)	Solenoid 7 B Field (T)
1	1.0719	0.8482	0.7448	0.4998
2	1.0976	0	0	0.1176

Beam at the Stage 1 End Station

300

250

200

150

100

50

800

600

400

200

-2

-żo

-i0

 $^{-1}$

- Symmetric, circular, parallel beam.

Ŕ

- 3.6cm spot size

10

20

- Small growth in energy spread due to space charge
- Uniform spectrum and temporal profile

ROYAL HOLLOWAY

W. Shields 2nd September 2024

300

250

200

150

100

50

0

800

600

400

200

-20

-3

-io

-1 0

X' (×10⁻³)

0

X/mm

- Standard parameterised source developed
- Stage 1 performance unaffected
- No other stage 1 changes
- Ready for CDR write-up.

