

Laser-driven proton and ion source (WP2): brief highlights

R. Gray (Strathclyde), N.Dover (Imperial), T. Dascalu (Lancaster), C. Palmer (QUB) on behalf of all WP2 contributors

LhARA 24 month review, 2nd September 2024

Laser driven ion source for LhARA

- High energy (e.g. ~15 MeV p+, 4 MeV/u C6+) from source
- Needs to operate at 10 Hz for long periods
- Aiming to deliver 10⁹ protons or 10⁸ carbon ions per shot, eventually other ions

BELFAS1

Overview of de-risking activities

Work Package 1.2

R.J. Gray^{1,2}, T.S. Dascalu³, R. Wilson¹, T. Wilson¹, C.A.J. Palmer⁴, N.P. Dover⁵, P. McKenna¹ Work Package 1.2

T.S. Dascalu¹, E. Boella^{1,2}, N.P. Dover³, R.J. Gray^{2,4}

Development of diagnostic techniques for LhARA

Scintillator studies

- Suitability for high repetition rate ion measurement with large radiation background
- Experiments at MC40 to choose candidates to be tested on laser source
- Measuring efficiency and stopping power linearity _____

Platform for R&D of high repetition ion sources - Zhi laser

- 100 Hz high power laser at Imperial College London
- Low energy laser compared to LhARA; but, flexible platform for technical R&D

Laser driven source running at 100 Hz

High stability tape target *Xu et al., HPLSE 11, e43 (2023)*

- We have now measured protons > 15 MeV on SCAPA at up to 1 Hz repetition rate (typically 0.3 Hz)
- This has been cross calibrated with RCF dosimetry and we find with >10⁹ protons at 10 MeV.
- The scaling is linear with on target energy

- As reported during the April CM there were significant prepulses measured in the system which were limiting our proton energy and flux
- Offending prepulses have been removed and the contrast is significantly improved and there has been detailed characterisation of laser stability

- We have characterised the beam profile using RCF and measured the beam divergence
- · More measurements at high repetition rate would be important in the next phase

- Variability in the spectrum is low and is mainly driven by the small variation in the laser energy
- The TP spectrometer exaggerates the variability of the spectrum due to proton beam pointing stability

- Next steps would be to improve the encircled energy within the spot (this will lead to higher energy and flux)
- Further tests required on controlled preheater to optimise the scale length
- Reduction in laser jitter will support PoPLaR beamline and TP measurement

Prediction of optimal pre-plasma conditions (M2.1)

- Route to increase $E_{p, max}$ without varying laser energy or target thickness
- Validated with high-fidelity 3D PIC simulations
- Need to explore how to reproduce optimal pre-plasma experimentally

Modelling of TNSA for heavy ion acceleration (M2.1)

- First hydro. + 3D PIC simulations of carbon acceleration from 6 μm AI solid target
- Carbon cutoff energy consistent with those predicted for protons under similar target and laser conditions
- Presence of lighter ion species on the back of the target screens the acceleration

Modelling of realistic conditions at SCAPA (M2.2)

4