Future Colliders: e⁺e⁻ Higgs Factories

PPAP Community Meeting, 25 June 2024 Aidan Robson, University of Glasgow

Higgs Factories

- ♦ Why e+e-?
- Single Higgs
- Higgs self-coupling
- Top & BSM physics
- Status and outlook of projects
- Strategic considerations

The Higgs Boson and the Universe

Is the Higgs the portal to the Dark Sector? What is Dark Matter made of? • does the Higgs decays "invisibly", i.e. to dark sector particles? • does the Higgs have siblings in the dark (or the visible) sector?

- What drove cosmic inflation?
- What generates the mass pattern in quark and lepton sectors?
- What created the matter-antimatter asymmetry?
- What drove electroweak phase transition? - and could it play a role in baryogenesis?

- The Higgs could be first "elementary" scalar we know:
 - is it really elementary?
 - is it the inflaton?
 - even if not it is the best "prototype" of a elementary scalar we have => study the Higgs properties precisely and look for siblings
- Why is the Higgs-fermion interaction so different between the species?
 - does the Higgs generate all the masses of all fermions?
 - are the other Higgses involved or other mass generation mechanisms?
 - what is the Higgs' special relation to the top quark, making it so heavy?
 - is there a connection to neutrino mass generation?
 - => study Higgs and top and search for possible siblings!
- Does the Higgs sector contain additional CP violation?
 - in particular in couplings to fermions?
 - or do its siblings have non-trivial CP properties?
 - => small contributions -> need precise measurements!
- What is the shape of the Higgs potential, and its evolution?
 - do Higgs bosons self-interact?
 - at which strength? => 1st or 2nd order phase transition?
 - => discover and study di-Higgs production

The Higgs Factory mission

- Find out as much as we can about the 125-GeV Higgs
 - Basic properties:
 - total production rate, total width
 - decay rates to known particles
 - invisible decays
 - search for "exotic decays"
 - CP properties of couplings to gauge bosons and fermions
 - self-coupling
 - Is it the only one of its kind, or are there other Higgs (or scalar) bosons?
- ◆ To interpret these Higgs measurements, also need:
 - top quark: mass, Yukawa & electroweak couplings, their CP properties...
 - Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP...
- Search for direct production of new particles
 and determine their properties
 - Dark Matter? Dark Sector?
 - Heavy neutrinos?
 - SUSY? Higgsinos?
 - The UNEXPECTED !

 Conditions at e+e- colliders very complementary to LHC;

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

The Higgs Factory mission

- Find out as much as we can about the 125-GeV Higgs
 - Basic properties:
 - total production rate, total width
 - decay rates to known particles
 - invisible decays
 - search for "exotic decays"
 - CP properties of couplings to gauge bosons and fermions
 - self-coupling
 - e+e- Higgs factory identified as highest-priority next collider, by European Strategy Update 2020 and US Snowmass process 2023 • Is it the only one of its kind, or are there **other Higgs (or scalar) bosons**?
- To interpret these Higgs measurements, also need:
 - top quark: mass, Yukawa & electroweak couplings, their CP properties...
 - Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP...
- Search for direct production of new particles - and determine their properties
 - Dark Matter? Dark Sector?
 - Heavy neutrinos?
 - SUSY? Higgsinos?
 - The UNEXPECTED !

 Conditions at e+e- colliders very complementary to LHC;

In particular:

- low backgrounds
- clean events
- triggerless operation (LCs)

Higgs factory contenders (1): Linear Colliders International Linear Collider (ILC) [tp LC. Scenario H20-staged ECM = 250 GeV minosity 3000 ECM = 350 GeV +イハニアック - ECM = 500 GeV 4 ab⁻¹ 2000 2 ab⁻¹ ILC: 250, 350, 500 GeV ; 1 TeV Integrated | 21km / 31km / 40km 1000 Superconducting RF, 35 MVm⁻¹ Slte proposed in Japan TDR 2013, updated for 250GeV European XFEL demonstrates technology ⁰ 5 10 15 20 **Compact Linear** years Integrated luminosity [ab⁻¹] Integrated luminosity drive beam 6 Total Collider (CLIC) 1% peak power-generating structure 0.38 TeV 1.5 TeV 3 TeV 4 2.5 ab⁻¹ 5 ab⁻¹ 1 ab⁻¹ CLIC: 380 GeV ; 1.5, 3 TeV 11km / 29km / 50km ^{main beam} power Room temperature, 72–100 MVm⁻¹ 2 Site proposed at CERN CDR 2012, Updated Staging Baseline 2016, power accelerating structure Project Implementation Plan 2018 20 25 5 15 0 10 Similar structures used for Swiss FEL Year Cool Copper Collider (C³) C³: 250, 550 GeV 8km / 8km C³ Beam delivery / IP identical to ILC Operation temperature 77K, 70–120 MVm^{-1} Damping rings / injector similar to CLIC Proposed site at Fermilab Physics output very similar to ILC Pre-CDR Hybrid Asymmetric Linear Higgs Factory (HALHF) HALHF: 250 GeV (e⁻ 500GeV, e⁺ 31GeV) 3.3km 25 MVm⁻¹ conventional, 6.3GVm⁻¹ plasma Pre-CDR Aidan Robson 6

Higgs factory contenders (2): Circular Colliders

Aidan Robson

Higgs factory contenders (2): Circular Colliders

Pre-0

Higgs in e⁺e⁻

Higgs production in e⁺e⁻

Aidan Robson

Higgs couplings sensitivity

Illustrative comparison of sensitivities (combined with HL-LHC)

Scale of new decoupled physics

 $\mathcal{L}_{\rm SM}$)-

Standard Model

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Dim-6

operators

Higgs program despite quite different assumed integrated luminosities

- \bullet several couplings at few-0.1% level: Z, W, g, b, τ
- some more at ~1%: γ , c

Snowmass EFT couplings

Higgs couplings sensitivity

- Illustrative comparison of sensitivities (combined with HL-LHC)
- Snowmass EFT couplings arxiv: 2206.08326 precision reach on effective couplings from SMEFT global fit

- Higgs program despite quite different assumed integrated luminosities
 - \bullet several couplings at few-0.1% level: Z, W, g, b, τ
 - some more at ~1%: γ , c

Standard

 $\mathcal{L}_{\rm SM}$

Scale of new decoupled physics

Mode

 $\mathcal{L}_{\mathrm{SMEFT}} =$

Dim-6

operators

Polarisation

why is the performance between projects so similar,
 given the very different integrated luminosities? -> beam polarisation at linear colliders

A_{LR} lifts degeneracy between operators

♦ 2 ab⁻¹ polarised ≈ 5 ab⁻¹ unpolarised

-> the reason all e+e- Higgs factories perform so similarly

Aidan Robson

Higgs self-coupling: indirect access

• If λ deviates from SM, loop diagrams will give corrections to single-Higgs production and to Higgs decays

• e.g. $(\kappa_{\lambda}-1)=1$ increases σ (e⁺e⁻->ZH) by around 1.5% at $\sqrt{s}=240$ GeV

• However, generic new physics tends to give deviations of the same size in several Higgs couplings so a fit to a larger model is needed and in this case contributions from λ are highly suppressed

• ECFA Higgs@Future Colliders WG fitted single Higgs measurements, first to 1parameter fit (SM modified only to shift of parameter κ_{λ}) – driven by ZH statistics

collider	1-parameter	full SMEFT
CEPC 240	18%	-
FCC-ee 240	21%	-
FCC-ee 240/365	21%	44%
FCC-ee (4IP)	15%	27%
ILC 250	36%	-
ILC 250/500	32%	58%
ILC 250/500/1000	29%	52%
CLIC 380	117%	-
CLIC 380/1500	72%	-
CLIC 380/1500/3000	49%	-

Higgs@Future Colliders 1905.03764

"-" means fit does not close

 theoretical work ongoing for disentangling contributions; very interesting to see how far this can go

Higgs self-coupling: direct double-Higgs production

 Two contributing direct production mechanisms: ZHH and vvHH

- ZHH becomes available at ILC 500
- studied in full sim with ILD detector
 Z->II / Z->qq, HH->bbbb /HH->bbWW*
- If self-coupling λ is at SM value then double-Higgs process observable at 8σ , with 27% precision on λ
- Adding vvHH at 1TeV brings precision on λ to 10%

◆ ILC analysis used state-of-the-art reconstruction at the time (2016), but sensitivity very dependent on b-tagging performance, dijet mass resolution −> update is ongoing

CLIC studied sensitivity at 1.4TeV and 3 TeV

• at 1.4TeV rate-only analysis gives relative uncertainties –29% and +67% around SM value of $g_{\rm HHH}$

• 3TeV differential measurement gives -8% and +11% assuming SM $g_{\rm HHWW}$

• simultaneous measurement of triple and quartic couplings gives constraints below 4% in $g_{\rm HHWW}$ and below 20% in $g_{\rm HHH}$ for large modifications of $g_{\rm HHWW}$

$ \sigma(HHv_e\overline{v_e}) > \frac{1}{2} $ $ \sigma(ZHH) \qquad 3 $	$\frac{\Delta\sigma}{\sigma} = 28\%$	$>5\sigma$ OBSERVATION $\frac{\Delta\sigma}{\sigma} = 7.3\%$
σ(ZHH) 3.		
	3.3σ EVIDENCE	2.4σ EVIDENCE
g _{HHH} /g SM _{HHH} 1. -2 ra	1.4TeV: -29%, +67%	1.4 + 3TeV: -8%, +11% differential analysis

Eur. Phys. J. C 80, 1010 (2020)

Aidan Robson

Higgs self-coupling: non-SM case (0.5–1TeV)

Most interesting case is when λ does NOT take SM value
 –> examine behaviour of production mechanisms

- Owing to their different behaviours, combining ZHH and vvHH gives a measurement of λ at the level of 10–15% for any value of λ strong benefit of reaching $\sqrt{s} \sim 550$ GeV
- e.g. 2HDM models where fermions couple to only one Higgs doublet allow $0.5 \leq \lambda/\lambda_{SM} \leq 1.5$, while EWK baryogenesis typically requires $1.5 \leq \lambda/\lambda_{SM} \leq 2.5$

Threshold scan proposed by all projects

sensitive to top mass, width, coupling reach $\Delta m_{\rm t}$ around level of 10MeV (stat)

Top-quark physics

- Pair-production
- benefits from higher \sqrt{s} and multiple stages
- Top cross-sections, both polarisations
- Top forward-backward asymmetries
- Statistically optimal observables for top EWK couplings; more than one energy stage allows global fit

BSM physics

SUSY signatures:

General benefit of searches in e⁺e⁻: avoiding 'holes' in parameter space

Exotic signatures:

Long-lived particles; displaced vertices - hidden valley H -> $\pi_V^0 \pi_V^0$ -> bbbb General benefit of 'clean environment' in e⁺e⁻

> Plus BSM interpretations of precision measurements / EFT fits -> e.g. compositeness limits

C FCC

FCC Project and CEPC

- Following last ESPP Update, **FCC** is CERN's "Plan A".
- Feasibility study 2021-25 concentrates on:
- technical & administrative feasibility of tunnel & surface areas
- optimisation of collider designs
- elaboration of a sustainable operational model
- development of a consolidated cost estimate
- identification of substantial resources from outside CERN's budget for the implementation of the first stage (tunnel & FCC-ee)
- Mid-term report published 2024 well-received by CERN committees.
- Final Feasibility Study Report brought forward to March 2025
- Tentative timeline laid out for FCC-ee detectors:
 - CDRs 2031; TDRs 2035; Installation 2041; Commissioning 2045

- **CEPC** pursuing key technology R&D
- Prototype dipole modules produced
- TDR published 2023
- Chinese Academy of Sciences recently ranked CEPC as top priority in the relevant subcommittee
- Next steps towards approval:
- Chinese Academy of Sciences decides whether to submit CEPC project request to 5-year plan (~autumn this year)
- Funding decisions made in 2025 for 15th 5-Year Plan (runs 2026–30)

ILC and CLIC Projects

- **ILC** TDR 2013, several updates since then
- Site well understood; geological surveys done
- European XFEL demonstrated industrial cavity production
- Local support for hosting at Kitakami
- The International Development Team (IDT) was set up in 2020 to move towards the ILC Pre-lab
- International Technology Network (ITN) launched in July 2023

• Global collaboration programme focusing on time-critical accelerator R&D; funds flowing to Europe through KEK–CERN agreement

SRF e- & e+ Sources Nano-beam

Synergy with other colliders

- **CLIC** key technologies demonstrated; site well understood
- X-band technology readiness for the 380 GeV CLIC initial phase increasingly driven by use in small compact accelerators
 - A compact FEL (CompactLight: EU Design Study 2018-21)
 - Compact Medical linacs e.g. flash electron therapy at CHUV (Lausanne)
 - Linearizers and deflectors in FELs (PSI, DESY, more)
 - 1 GeV X-band linac at LNF; SwissFEL uses CLIC-like structures at C-band –> helping to include industrial partners towards a collider
- Technical & experimental studies on design and parameters continue
 - Module studies; Beam dynamics and parameters
 - Tests in CLEAR; High efficiency klystrons
- Preparing 'Readiness Report' for 2025

C³ and HALHF Projects

C³: 8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

• Large portions of accelerator complex are compatible between LC technologies

-Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)

-Damping rings and injectors to be optimized with CLIC as baseline

- R&D received some support from US P5 committee
- Moving towards CDR
- Could also be used as upgrade technology for ILC
- HALHF needs around 10 years R&D (driven by plasma cell R&D)
- very rough cost estimate extrapolating from ILC ~1.5bn ILCU (compare ~5bn ILCU for ILC)
 - => towards single-country scale
- could build in ~2 years

Overall HALHF facility length ~ 3.3 km – which will fit on ~any of the major particle physics labs.

> considering configurations also for 380 and 550 GeV

• also considering options for upgrading ILC from 250 to 550

 initial studies of detector requirements for asymmetric configuration ongoing

Detectors & software

Different projects have individual specific requirements from – detector concepts

accelerator environments, but also many common aspects:

detector technologies
software tools (& physics studies)

Detector	Collider	SW name	SW status	SW future
ILD	ILC	iLCSoft	Full sim/reco	
SiD	ILC	iLCSoft	Full sim/reco	
CLICdet	CLIC	iLCSoft	Full sim/reco	
CLD	FCC-ee	iLCSoft	Full sim/reco	Key4hep
IDEA	FCC-ee	FCC-SW	Fast sim/reco	· · ·
IDEA	CEPC	FCC-SW	Fast sim/reco	
CEPCbaseline	CEPC	iLCSoft branch-off	Full sim/reco	

Menu of physics to be covered?

- ◆ 91 GeV -> precision EW
- (160 GeV $\rightarrow m_{\rm W}$ from WW threshold)
- ◆ 250 GeV –> precision Higgs mass and Higgs branching fractions
- ◆ 350 GeV -> precision top quark mass (threshold scan)
- ◆ 550–600 GeV –> double Higgs-strahlung
 - -> ZHH, top electroweak couplings, precision WW -> H fusion
- 800–1000 GeV -> double Higgs from WW fusion
 -> vvHH, precision top Yukawa and CP
- beyond: Higgs quartic coupling, and exploration...

Broad agreement that we want to do all of this physics

Different proposals take different approaches:

ILC/C³ proposal runs at each energy; CLIC proposal consolidates Higgs & top to 380GeV then >1TeV; FCC puts some parts with hh.

Strategic question 1:

– how much of the programme should be done with the next machine (e^+e^-)?

– or are we prepared to wait for the next-to-next (hh or $\mu\mu$) ?

Aidan Robson

Timelines?

Sustainability?

Strategic question 3:

- when/how to fold in environmental considerations?

10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	MW		
Proposal Name	Power Consumption		
FCC-ee (0.24 TeV)	290		
CEPC (0.24 TeV)	340		
ILC (0.25 TeV)	140 *		
CLIC (0.38 TeV)	110		
ILC (3 TeV)	~400		
CLIC (3 TeV)	~ 550		
	Proposal Name FCC-ee (0.24 TeV) CEPC (0.24 TeV) ILC (0.25 TeV) CLIC (0.38 TeV) ILC (3 TeV) CLIC (3 TeV)		

Full use of infrastructures – all projects FCCee considering:

- electrons from injector to beam-dump
- extracting electrons from booster
- use of synchrotron photons

Towards 'Green ILC': similarly @ CERN

ILC center futuristic view

Lifecycle assessment:

Study by Arup on carbon footprint and other environmental impacts, done to international standards

Assesses Global Warming Potential of underground civil engineering – raw materials, transport, construction activities

CLIC 380GeV:

127kton CO2-eq (two-beam option) 290kton CO2-eq (klystron option)

ILC 250GeV:

266kton CO2-eq

-> also points out potentials to reduce Report released summer 2023

Now commissioning extended study to account for accelerator components & detectors

Flexibility?

Strategic question 4:

– how concrete is the plan / how important is flexibility?

- Looking ahead to the next-to-next machine:
 - are we ready to make the decision now on the next-to-next machine?
 - is FCC-hh definitely realisable at an achievable cost? (magnets?)
 - what is the timescale for currently-developing technologies to mature? and should we leave space for them to enter?

(muon collider? plasma wakefield acceleration?)

Flexibility?

Strategic question 4:

– how concrete is the plan / how important is flexibility?

- Looking ahead to the next-to-next machine:
 - are we ready to make the decision now on the next-to-next machine?
 - is FCC-hh definitely realisable at an achievable cost? (magnets?)
 - what is the timescale for currently-developing technologies to mature? and should we leave space for them to enter? (muon collider? plasma wakefield acceleration?)
- Linear machines are intrinsically flexibile in their run scenarios
 - -> allows to adapt to external factors (physics landscape / budgetary) and postpone decision on next-to-next machine

NB, linear options studied in detail are 'just' benchmarks;		Benchmark	HL-LHC	HL-LH 380 (4 ab ⁻¹)	$\frac{\text{IC} + \text{CLIC}}{380 (1 \text{ ab}^{-1})}$	HL-LHC 240	2 + FCC-ee 365
CLIC could be built with initial stage at 250, or a stage a (or ILC could be built at 380) –> these are physics choices to be made And e.g. ILC could be built in Europe	$t 500;$ $g_{HZZ}^{\text{eff}}[\%]$ $g_{HWW}^{\text{eff}}[\%]$ $g_{H\gamma\gamma}^{\text{eff}}[\%]$ $g_{H\gamma\gamma}^{\text{eff}}[\%]$ $g_{H\gamma\gamma}^{\text{eff}}[\%]$	SMEFT _{ND} SMEFT _{ND} SMEFT _{ND} SMEFT _{ND}	3.6 3.2 3.6 11. 2.3	0.3 0.3 1.3 St 9.3 St	$+1500(2.5 \text{ ab}^{-1})$ $0.2 \square \\ \square$	0.5 0.5 1.3 9.8	0.3 0.3 1.2 9.3 0.8
Staging optimisation example: CLIC baseline run plan is optimised to move to	$\begin{array}{c} g_{Hgg}[\mathscr{K}]\\ g_{Htr}^{eff}[\mathscr{K}]\\ g_{Hcc}^{eff}[\mathscr{K}]\\ g_{Hbb}^{eff}[\mathscr{K}]\\ g_{Ht\tau}^{eff}[\mathscr{K}]\\ g_{H\tau\tau}^{eff}[\mathscr{K}] \end{array}$	SMEFT _{ND} SMEFT _{ND} SMEFT _{ND} SMEFT _{ND} SMEFT _{ND}	2.5 3.5 - 5.3 3.4 5.5	3.1 0 0.6 1.0 4.3	bine: 1ab ⁻¹ +	3.1 1.4 0.7 0.7 4.	3.1 1.2 0.6 0.6 3.8
sensitivities can be achieved with CLIC just running longer at first stage	$\frac{\delta g_{1Z}[\times 10^2]}{\delta \kappa_{\gamma}[\times 10^2]} \\ \lambda_{Z}[\times 10^2]$	SMEFT _{ND} SMEFT _{ND} SMEFT _{ND}	0.66 3.2 3.2	0.027 0.032 0.022 2001.05278	0.013 0.044 0.005 European	0.085 0.086 0.1 Strateg	0.036 0.049 0.051 y Briefing E

Cost, community, and scenarios?

Strategic question 5:

– when/how to fold in cost considerations?

- how to consider 'loss of opportunity' if money spent on one thing not others?

Cost	Cost	NB these are the costings
ILC 250: ~5 BCHF	FCC-ee (to √s=365): ~11.6 BCHF	presented at the last
CLIC: 380GeV: 5.9 BCHF to 1.5 TeV: add 5.1 BCHF to 3 TeV: add 7.3 BCHF	FCC-hh: 17 BCHF (if built after FCC-ee) 24 BCHF (if built standalone)	European Strategy; they are all being updated. This is a set of costings that can be compared

Strategic question 6:

- how to we wish to see the (collider) particle physics community evolving?

– concentrated in one large project or allowing room for more, smaller experiments?
 – FCC-ee up to 4 IPs; LCs up to 2 expts via (ILC) push-pull or (CLIC) 2 IPs

Strategic question 7:

- what should Europe do in the case that CEPC goes ahead?

- extent to which it would be possible to participate?
- or enter into a 'race' for a circular machine?
- or do something complementary e.g. higher $\sqrt{s e+e-}$?

Aidan Robson

Summary

Future visions

Broad agreement across community on the physics we want to do with a next collider – everyone involved would be delighted for **any** Higgs factory to be realised...

However, there can be different routes to the physics:

Linear Collider

– a Higgs factory as soon as possible, upgradable

R&D for the machine beyond in parallel;
 no constraints imposed by the LC

a strong diversified programme using the LC complex

Initial Linear Collider can be followed (if funding permits) by energy increases and/or independent muon and/or hadron machines with radius and magnets to be determined – can also overlap in time with hadron/muon machines

In the longer future: the civil infrastructure can be used with novel acceleration techniques e.g. plasma

Circular Collider

an integrated programme of e⁺e⁻ and pp
 R&D for FCC-hh magnets in parallel, but
 large-scale civil infrastructure secured at the
 first stage

– larger experimental community with up to 4 IPs

Initial Higgs Factory civil infrastructure reused (if funding permits) for hadron machine with radius fixed; magnets to be determined. Sequential progression.

Programme fixed to ~2090s or beyond.

Needs careful thought about how best to achieve Higgs Factory and beyond – trade-offs / risks

Hope for strong engagement in these discussions over the next ~year

Aidan Robson

3rd ECFA Workshop on Higgs/Top/EWK factories

Registration & abstract submission OPEN https://indico.in2p3.fr/event/32629/overview

Payment of Registration

11th, 16:00.