High-Energy Neutrino Astronomy

PAAP roadmap (2022), https://www.ukri.org/publications/particle-astrophysics-advisory-board-roadmap-2022/

1. High-Energy Astrophysical Neutrinos

High-energy neutrino astronomy answer STFC key science challenges

Neutrino

A: how did the universe begin and how is it evolving?

Challenge C: what are the basic constituents of matter and how do they interact?

A1	What are the laws of physics operating in the early Universe?		
A2	How did the initial structure in the universe form?		
Aз	How is the universe evolving and what roles do dark matter and dark energy play?		
A 4	When and how were the first stars, black holes and galaxies born?		
A5	How do stars and galaxies evolve?		
A 6	How Do Nuclear Reactions Power Astrophysical Processes and Create the Chemical Elements		
A 7	What is the True Nature of Gravity?		
A8	What can gravitational waves and high-energy particles from space tell us about the universe		
B2	What effects do the Sun and other stars have on their local environment?		
C1	What are the fundamental particles and fields?		
C2	What are the fundamental laws and symmetries of physics?		
Сз	What is the nature of space-time?		
C4	What is the nature of dark matter and dark energy?		
C6	What is the nature of nuclear matter?		
C7	Are there new phases of strongly interacting matter?		
C8	Why is there more matter than antimatter?		

1. High-Energy Astrophysical Neutrinos

High-energy astrophysical neutrinos offer the highest energy fixed target experiments.Synergy with accelerator-based experiments.

Snowmass, JHEA36(2022)55, Neutrino 2024, https://agenda.infn.it/event/37867/contributions/234025/

1. High-Energy Astrophysical Neutrinos

Rich scientific program to cover many BSM physics topics.

- Energy spectrum, arrival time, flavor are affected by production, propagation, detection of neutrinos

Snowmass, JHEA36(2022)55, Neutrino 2024, https://agenda.infn.it/event/37867/contributions/234025/

1. High-Energy Astrophysical Neutrinos

Rich scientific program to cover many BSM physics topics.

- Energy spectrum, arrival time, flavor are affected by production, propagation, detection of neutrinos

Synergy with multi-messenger astronomy

- Astrophysical neutrino model errors (spectrum, flavour contents, etc) will be reduced from gamma-ray astronomy etc

Synergy with neutrino oscillation physics

- Oscillation parameter errors will be reduced by future oscillation experiments

 $H \sim \frac{m^2}{2E} + V(new \ physics)$ $P \sim V(new \ physics) \cdot L$

2. UK High-Energy Astrophysical Neutrino Consortium

- 5 projects contributed by UK groups
- IceCube, PUEO, P-ONE, KM3NeT, Trinity
- Experimental submission to PPGP (IceCube, PUEO, P-ONE) Near term plan: Exploit science from IceCube and PUEO Long term plan: P-ONE as a baseline UK project

2. IceCube

Discovery of high-energy galactic neutrinos

IceCube-Upgrade

- Deployment 2025/26 season

IceCube-Gen2

- Setback at South Pole infrastructure support
- Impact on IceCube-Gen2 is unknown

King's College London

- BSM physics analysis
- IceCube-Upgrade sensitivity
- Gen2 R&D

(scintillator-based detector)

2. PUEO

Fifth generation of ANITA flight

- Flight plan on 2025
- Askaryan effect, skimming tau, UHECR, exotics

UCL

- Developing digitisation system based on XILINX RFSoC
- Working on main analysis (diffuse flux)

10

Target cosmogenic models

2. P-ONE

Next generation neutrino telescope

- IceCube expertise
- KM3NeT multi-PMT technology
- Baikal-GVD inspired string configuration
- Available underwater infrastructure

UCL

- Leading role for pathfinder analysis
- Forming multi-messenger community

KM3NeT

HyperK

P-ONE

Neutrino 2024, https://agenda.infn.it/event/37867/contributions/233917/

2. KM3NeT

ORCA, Low energy array, $\sim 10\%$ made (23/115 lines) - Oscillation physics

ARCA, High energy array, $\sim 10\%$ made (28/230 lines) - Multi-10 PeV event (?!)

University of Hull (Astronomy)

- Tier 1 data site, HPC, ML, etc

- Core collapse SNe real time system

4000

3500

3000

원 2500

ਭੋ 2000

ኈ 1500

1000

500

-0.75

Trinity (ICRC2023) 10.22323/1.444.1170

2. Trinity

Air shower telescope

- gamma-ray astronomy technology (CTA)
- Demonstrator is installed, targeting to see TXS0506+056 neutrino

University of Durham (astronomy)

- Calibration using drone
- Multi-messenger astronomy (gamma-ray astronomy)

3. UK High-Energy Astrophysical Neutrino in PPAP

Near term plan: Exploit science from IceCube and PUEO

IceCube

- IceCube-Upgrade analysis for the first 3σ mass ordering result in 2028

- Maintain DMIce scintillator detector for calibration & cosmic ray physics

PUEO

- Pre-flight calibration
- Flight on-site support
- In-flight monitoring and maintain the monitoring system

3. UK High-Energy Astrophysical Neutrino in PPAP

Long term plan: **P-ONE** as a baseline UK project

- Opportunities for UK groups to make significant contribution

3. UK High-Energy Astrophysical Neutrino in PPAP

Long term plan: P-ONE as a baseline UK project

- Opportunities for UK groups to make significant contributions

- PMTs characterisation
- optical modules design and assembly
- optical modules read-out electronics
- FPGA online trigger
- Online monitoring systems
- Offline event reconstruction
- Simulation and Analysis frameworks
- Physics case:
 - BSM physics affecting the propagation of neutrinos over astronomical distances
 - Extragalactic point-sources (AGNs, starburst galaxies, tidal disruption events): detection sensitivity and model building
 - Milky Way in neutrinos: benchmarking mass tracers and spotting hot spots (DM production, gamma-ray point sources)
 - cross-disciplinary: marine biology and oceanography science

Conclusion

Neutrino telescopes are successful experiments

High-energy astrophysical neutrinos offer very exciting science for both particle physics and astrophysics

There are many planned projects with discovery potentials
Near term plan: Exploit science from IceCube and PUEO
Long term plan: P-ONE as a baseline UK project. there are opportunities to UK groups to make significant contributions on P-ONE.

We are looking for more collaborators, and a way to work closely with UK astronomy community

Thank you for your attention!

Backup

1. High-Energy Astrophysical Neutrinos

Direct messengers from the furthest celestial objects

1. High-Energy Astrophysical Neutrinos

Above ~10-100 TeV neutrinos are only direct extra-galactic messengers

Formaggio and Zeller, Rev.Mod.Phys.,84 (2012) 1307

1. High-Energy Astrophysical Neutrinos

1. Active Galactic Nuclei (AGNs)

Low energy, long propagation experiments - Underground low-background detectors High energy, long propagation experiments - Neutrino telescopes

- Short-baseline experiments

- Collider neutrino experiments 21

Neutrino 2024, https://agenda.infn.it/event/37867/contributions/234025/ Snowmass, JHEA36(2022)55

Low energy, long propagation experiments - Underground low-background detectors

High energy, long propagation experiments - Neutrino telescopes

Astrophysical neutrinos (both low and high energy) have sensitivity to pseudo-Dirac neutrinos

2. High-Energy Astrophysical Neutrinos

Energy Range	Experiment	Technology	Detected Flavor	Ref.
$\lesssim 10^3~{ m GeV}$	JUNO	Liquid scintillator	All Flavors	[234]
$\lesssim 10^3~{ m GeV}$	DUNE	LArTPC	All Flavors	[671]
$\lesssim 10^3~{ m GeV}$	THEIA	WbLS	All Flavors	[486]
$\lesssim 10^3~{ m GeV}$	Super-Kamiokande	Gd-loaded Water C	All Flavors	[645]
$\lesssim 10^4~{ m GeV}$	Hyper-Kamiokande	Water Cherenkov	All Flavors	[483]
$\lesssim 10^5~{ m GeV}$	ANTARES	Sea-Water Cherenkov	$ u_{\mu}, \bar{ u}_{\mu} (CC) $	[672]
$\lesssim 10^6~{ m GeV}$	IceCube/IceCube-Gen2	Ice Cherenkov	All Flavors	[433,673]
$\lesssim 10^6~{ m GeV}$	KM3NeT	Sea-Water Cherenkov	All Flavors	[674]
$\lesssim 10^6~{ m GeV}$	Baikal-GVD	Lake-Water Cherenkov	All Flavors	[675]
$\lesssim 10^6~{ m GeV}$	P-ONE	Sea-Water Cherenkov	All Flavors	[676]
1-100 PeV	TAMBO	Earth-skimming WC	$\nu_{ au}, ar{ u}_{ au}$ (CC)	[677]
$\gtrsim 1 \; PeV$	Trinity	Earth-skimming Image	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[678]
$\gtrsim 10 \text{ PeV}$	RET-N	Radar echo	All Flavors	[679]
$\gtrsim 10 \; { m PeV}$	IceCube-Gen2	In-ice Radio	All Flavors	[433]
$\gtrsim 10 \; PeV$	ARIANNA-200	On-ice Radio	All Flavors	[680]
$\gtrsim 20 \text{ PeV}$	POEMMA	Space Air-shower Image	$ u_{ au}, ar{ u}_{ au} (CC) $	[681]
$\gtrsim 100 \; PeV$	RNO-G	In-ice Radio	All Flavors	[682]
$\gtrsim 100 \; {\sf PeV}$	ANITA/PUEO	Balloon Radio	All Flavors	[683, 684]
$\gtrsim 100 \; {\sf PeV}$	Auger/GCOS	Earth-skimming WC	$\nu_{ au}, \bar{ u}_{ au} (CC)$	[685, 686]
$\gtrsim 100 \; {\sf PeV}$	Beacon	Earth-skimming Radio	$ u_{ au}, ar{ u}_{ au} (CC) $	[687]
$\gtrsim 100 \text{ PeV}$	GRAND	Earth-skimming Radio	$\nu_{\tau}, \bar{\nu}_{\tau}$ (CC)	688]

Many planned experiments targeting PeV-EeV neutrinos