Neutrinoless $\beta\beta$ decay and non-accelerator neutrinos The future (2025-2040)

Matteo Agostini
University College London
PPAP Community Meeting
Birmingham, 25/07/2024

Neutrinoless $\beta\beta$ decay

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\triangle B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

MA, Benato, Detwiler, Menéndez, Vissani Rev. Mod. Phys. 95, 025002 (2023)

Implication 1: discovery of first matter-creating process

- production of leptons without antileptons
- direct violation of L and B-L
- matter-antimatter asymmetry in our Universe

Implication 2: neutrinos are their own antiparticles

- nonzero Majorana mass
- alternative Higgs mechanism (see-saw)
- breakthrough towards new theory of fermion masses

Implication 3: proof of lepton-number-violating BSM physics

- new energy scale
- interplay with accelerator physics
- leptogenesis and dark-matter

Discovery prospects

Exchange of Majorana neutrinos:

- Weinberg operator
- likely the dominant channel

•
$$\lambda^n \propto m_{\beta\beta}^{-2} = \left| \sum_i U_{ei}^2 m_i \right|^{-2}$$

MA, Benato, Detwiler, Menéndez, Vissani Rev. Mod. Phys. 95, 025002 (2023)

News since last PPAP meeting

From nuclear physics

- first ab initio calculations with uncertainties
- **short-range** contribution increase NME values
- new estimate: Hamiltonians sampling & 0vββ-2vββ correlation

From cosmology

- fit suggest sigma is acting as fudge factor (missing physics)
- cosmology might not be able to measure neutrino masses

From neutrino oscillations

- NOvA + T2K pulls towards IO
- SK seems to favor normal ordering, result under scrutiny
- global fits are inconclusive

The hunt for neutrinoless $\beta\beta$ decay

Most sensitivity experiments

• **past decade:** GERDA, CUORE, KZ

• next 5 years: LEGEND-200, SNO+, K2Z

• next decade: LEGEND-1000, CUPID, nEXO

Exploring technologies

- for beyond IO: NEXT100, SNO+ Phase II
- for kinematic measurements: SuperNEMO

Dark-matter detectors:

- DARWIN/XLZD (up to 80 tonne)
- PandaX-xT

NMEs and sensitivities from MA, Benato, Detwiler, Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023) 10^{-3} 10^{-2} m_{light} [eV]

Most sensitivity experiments

- past decade: GERDA, CUORE, KZ
- next 5 years: LEGEND-200, SNO+, K2Z
- next decade: LEGEND-1000, CUPID, nEXO

Exploring technologies

- for beyond IO: NEXT100, SNO+ Phase II
- for kinematic measurements: SuperNEMO

Dark-matter detectors:

- DARWIN/XLZD (up to 80 tonne)
- PandaX-xT

Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

 $m_{light} [eV]$

Most sensitivity experiments

- past decade: GERDA, CUORE, KZ
- next 5 years: LEGEND-200, SNO+, K2Z
- next decade: LEGEND-1000, CUPID, nEXO

Exploring technologies

- for beyond IO: NEXT100, SNO+ Phase II
- for kinematic measurements: SuperNEMO

Dark-matter detectors:

- DARWIN/XLZD (up to 80 tonne)
- PandaX-xT

Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

Most sensitivity experiments

- past decade: GERDA, CUORE, KZ
- next 5 years: LEGEND-200, SNO+, K2Z
- **next decade:** LEGEND-1000, CUPID, nEXO

Exploring technologies

- for beyond IO: NEXT100, SNO+ Phase II
- for kinematic measurements: SuperNEMO

Dark-matter detectors:

- DARWIN/XLZD (up to 80 tonne)
- PandaX-xT

NMEs and sensitivities from MA, Benato, Detwiler, Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

Most sensitivity experiments

- past decade: GERDA, CUORE, KZ
- next 5 years: LEGEND-200, SNO+, K2Z
- **next decade:** LEGEND-1000, CUPID, nEXO

Exploring technologies

- for beyond IO: NEXT100, SNO+ Phase II
- for kinematic measurements: SuperNEMO

Dark-matter detectors:

- DARWIN/XLZD (up to 80 tonne)
- PandaX-xT

NMEs and sensitivities from MA, Benato, Detwiler, Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

m_{light} [eV]

International support (APPEC)

RECOMMENDATIONS:

APPEC strongly supports the CUPID and LEGEND 1000 double-beta decay experiments selected in the US-European process and endorses the development of NEXT. APPEC strongly supports fully exploiting the potential of the KATRIN direct neutrino mass measurement and the development of a new generation of experiments beyond KATRIN.

International support (DOE/NSF)

The search for neutrinoless double beta decay is a truly international effort, propelled by the compelling and fundamental discovery nature of the science. Three ton-scale projects (CUPID, LEGEND-1000, and nEXO) are all led by distinctly international collaborations with significant US leadership and responsibilities. International cooperation between funding agencies on double beta decay experiments is well organized and strong: two international summits have been held already, and a third is planned for early 2024. These stakeholders formed an International Working Group to coordinate efforts and to advance the field efficiently and cost-effectively.

North American-European 0νββ Summit (LNGS, Sep 21, APPEC/INFN/DOE) 2nd International Summit on the Future of 0νββ Decay (SNOLab, Apr 23)

A NEW ERA OF DISCOVERY

The big 3: closing up on inverted ordering

DOE's portfolio review (Summer 2021)

- review of conceptual designs reports
- panel of 18 experts evaluating against weighted criteria
 - 1. scientific merit of the proposed experiment
 - 2. global context
 - 3. technical maturity
 - 4. cost competitiveness and timeliness
 - 5. assurance of successful project delivery
- CUPID, LEGEND, nEXO technical design "ready to go"
- LEGEND top ranked project

ENERGY	
Office of Science	

Department of Energy Office of Nuclear Physics Review Report

from the

Portfolio Review

of the

Ton-scale Neutrinoless Double Beta Decay Experiment (TS-NLDBD)

July 13-16, 2021

Collaboration	Weighted Score
CUPID	6.4
LEGEND-1000	8.0
nEXO	7.0

NP continues to pursue the possibility, in collaboration with national and international partners, of a multi-experiment campaign capable of providing contemporaneous verification of any apparent observation of $0\nu\beta\beta$. Should it not prove possible to implement multiple projects in the search of $0\nu\beta\beta$, LEGEND-1000 would receive priority based on it receiving the highest ranking from the portfolio review panel.

The big 3: closing up on inverted ordering

DOE's portfolio review (Summer 2021)

- review of conceptual designs reports
- panel of 18 experts evaluating against weighted criteria
 - 1. scientific merit of the proposed experiment
 - 2. global context
 - 3. technical maturity
 - 4. cost competitiveness and timeliness
 - 5. assurance of successful project delivery
- CUPID, LEGEND, nEXO technical design "ready to go"
- LEGEND top ranked project

The LEGEND, project

- **LEGEND-200** (200 kg) @ LNGS
 - data taking since 2023
 - best background and energy resolution
 - first 0vbb search presented this summer

UCL, Liverpool, Warwick, Lancaster, Daresbury

- **LEGEND-1000** (1 tonne) @ LNGS
 - technical design ready, DOE CD1 this year
 - NSF funding under review

Sol submitted to STFC (12 institution, 37 academics)

CUPID @ LNGS

Dilution unit -

800 mK

- Li₂MoO₄ scintillating bolometers
- cryogenic mK infrastructure of CUORE
- particle identification and good energy resolution

nEXO @ SNOLab

- liquid enrXe TPC with 5 tonne total mass
- 136Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic

SNO+@SNOLab

- isotope systems commissioning
- Te-130 loading in 2025 at 0.5%
- planned phases with 1.5 and 3%
- sensitivity depends on purity during Te loading

Sussex

SuperNEMO @ Modane

- unique measurement of decay kinematics
- all systems commissioned, installing shielding now
- start data taking by the end of the year

Edinburgh, UCL, Warwick, Manchester, Imperial

Guenette + posters @ Neutrino 2024

NEXT-100 @ LSC

detector built and under commissioning

KCL, Lancaster, Liverpool, Oxford,

- first runs in Ar gas in May 2024
- Xenon runs to start shortly

XLZD

- dark-matter rare-event observatory
- 60-80 tonne of Xe
- 9% ¹³⁶Xe
- self-shielding
- sensitivity approaching that of nEXO for 80 tonne design

22 institutions

1

$T_{1/2}$ < 10²⁸ years: 100s events in ton-scale experiments

- O(10%) statistical uncertainty
- can probe decay mechanism

$T_{1/2}$ < 10²⁸ years: 100s events in ton-scale experiments

- O(10%) statistical uncertainty
- can probe decay mechanism

$T_{1/2} \sim 10^{28}$ years: ~10 events in ton-scale experiments

- statistical uncertainty ~ NME uncertainties
- multiple ton-scale experiments to confirm signal

$T_{1/2}$ < 10²⁸ years: 100s events in ton-scale experiments

- O(10%) statistical uncertainty
- can probe decay mechanism

$T_{1/2} \sim 10^{28}$ years: ~10 events in ton-scale experiments

- statistical uncertainty ~ NME uncertainties
- multiple ton-scale experiments to confirm signal

$T_{1/2} > 10^{28}$ years: < few events in ton-scale experiments

- R&D required to push further into NO, reduce cost
- variety of field is a strength

UK community strategy

- particle, astro-particle and nuclear physics communities
- 64 academics from 20 institutions

The strategy can be summarised in four points:

- Continued support for the exploitation of LEGEND-200, SNO+ and the SuperNEMO Demonstrator, recognising the unique near-term physics programmes of each experiment and building on substantial prior UK investment.
- 2) Support the construction of LEGEND-1000 in the near term as the highest priority project in the USA and Europe, ensuring UK leadership in an experiment that will have $>3\sigma$ discovery sensitivity for Majorana neutrinos in the inverted neutrino mass ordering range in the medium term.
- 3) Support the development and implementation of higher loading phases of SNO+, which will provide complementary sensitivity with a different isotope in the medium term and lay foundations for a technique that might be extended to the normal mass ordering in the longer term.
- Exploit cross-field scientific and technological synergies with the XLZD dark matter community and explore strategic R&D opportunities offered by complementary technologies, such as NEXT to further strengthen the main programme in the medium term, while continuing to support blue-skies R&D into new technologies able to reach sensitivities beyond the inverted mass ordering in the long term.

Neutrinoless $\beta\beta$ decay and non-accelerator neutrinos

Matteo Agostini
University College London
PPAP Community Meeting
Birmingham, 25/07/2024

- neutrino mass measurements
 - covered by Edward Daw' (QTFP)
- extraterrestrial neutrinos
 - covered by Teppei Katori (UHE neutrinos)
- reactor neutrinos
 - > JUNO
 - CLOUD/LIQUIDO

Reactor neutrino experiments with UK participation

JUNO

- large scintillator reactor-neutrino detector
- 3\sigma sensitivity to mass ordering in 6 years
- construction close to completion
- world leading broad-program in the next decade

Chooz LiquidO Ultranear Detector

- Phase I: opaque scintillator for U/Pu composition
- Phase II: indium loading for neutrino CC scattering
- Phase II: copper loading to lower threshold inverse beta decay

Warwick

Conclusions

- observing $0\nu\beta\beta$ decay would be a **ground-breaking discovery** (matter-antimatter asymmetry and theory of fermion masses with Majorana neutrinos)
- vibrant field: **staging** and **innovation** essential for rare-event searches
- current & tonne-scale experiment will explore unprobed parameter space with high-discovery power
- the UK has a strong leadership in the field and developed a strategy to maintain and strengthen it
 - exploitation of running experiments (short term)
 - construction of a tonne-scale experiment (short term) to explore the entire inverted ordering space (medium term)
 - forward looking developments strengthening the program (medium term) to go beyond the inverted ordering (long term)
- some interesting activities on reactor experiments