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Neutrinos have mass!

Ivan Martinez-Soler (IPPP)

There are experimental evidence showing that neutrinos 
are massive particles

Takaaki Kajita (Super-kamiokande) Neutrino 98

In the SM, neutrinos are massless particles

Arthur MacDonald. Nobel lecture
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SM is not th
e ultim

ate theory!

Ivan Martinez-Soler (IPPP)
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The observation of flavor oscillations has opened new questions, such as the origin of the neutrino masses


To explain the origin of the neutrino mass, we can add a right-handed state ( )


• The Majorana mass term breaks Lepton's number

• For small , neutrinos will behave as Dirac particles


NR

MR

Neutrinos have mass!

ℒν
mass ⊃ YνL̄Lϕ̃NR +

1
2

MRN̄c
RNR + h . c .

MR ≪
Yνv

2



5

Pseudo Dirac Neutrinos
The active states can be written as a supperposition of two almost degenerate mass eigenstates
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The masses of each eigenstate are 
given by

m2
ks = m2

k +
1
2

δm2
k
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m2
ka = m2

k −
1
2

δm2
k

δm2 ∼ MDMR

IMS, Perez-Gonzalez, Sen, PRD 105 (2022)
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Difusse Supernova Neutrino Background
Super-Kamiokande has presented the first evidence of the DSNB

0 1 2 3
redshift z

0.01

0.1

1

ρ *.
 [M

O. 
yr

-1
 M

pc
-3

]

UV
FIR
UDF
LBG
Hα

Φν(E) = ∫
zmax

0

dz
H(z)

RCCSN(z)Fν(E′￼)

Supernova rate

Ivan Martinez-Soler (IPPP)
Horiuchi, Beacom, Qwek, PRD 79 (2009)

Harada (Super-Kamiokande) Neutrino2024
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The DSNB probes Gpc scales Considering a detector like Hyper-Kamiokande 
doped with Gd

Diffuse Supernova Neutrino Background

Ivan Martinez-Soler (IPPP)

de Gouvêa, IMS, Perez-Gonzalez, 
Sen, PRD 102 (2020)
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Pseudo Dirac Neutrinos with Astrophysical Sources

IceCube has identified several candidate sources that can be used to search for pseudo-Dirac neutrinos

• Combining multiple sources allow us to explore a wide 
range of  and increase the significance.
δm2

Abbasi et al. (IceCube) Science 378, 
538 (2022)

Ivan Martinez-Soler (IPPP)
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Pseudo Dirac Neutrinos with Astrophysical Sources
IceCube is planning an upgrade corresponding to a volume ~10 times larger, allowing 
the observation of new sources.

Carloni, IMS, Arguelles, Babu, Bhupal, PRD 109 (2024)

• A dip in the neutrino spectra of several sources will 
robustly indicate this scenario.

Ivan Martinez-Soler (IPPP)
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The observation of flavor oscillations has opened new questions, such as the origin of the neutrino masses

To explain the origin of the neutrino mass, we can add a right-handed state ( )NR

Neutrinos have mass!

• Large values of  can explain the smallness of the neutrino mass (Seesaw)MR

ℒν
mass ⊃ YνL̄Lϕ̃NR +

1
2

MRN̄c
RNR + h . c .

mν ∼
Y†

ν Yνv2

MR
mN ≈ MR + 𝒪 (mν) • The masses predicted by the Type I seesaw are 

hard to test


• There are other scenarios where the Majorana 
mass can take smaller values
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HNLs

Several analysis has searched for HNLs

In the presence of , the flavor states can be written as a 
superposition of massive states as 

NR

ναL = ∑ UαmνmL + Uα4N4L

Ivan Martinez-Soler (IPPP)

Fernandez-Martinez,  Gonzalez-Lopez, Hernandez-Garcia, 
Hostert, Lopez-Pavon, arXiv:2304.06772
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HNLs
The copling of the HNLs with the SM fermions via mixing makes that they can be produced in meson decays

• Accelerators or beam dump experiments

• The typical signal expected is a displaced vertex 

Several experiments have been proposed 
(SHIP, Sadows…)

N

l+
αB+

Visible

Ivan Martinez-Soler (IPPP)

Ahdida et al (SHIP), JHEP 04 (2019)
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Beam dump experiments can 
increase the sensitivity 
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HNLs

Abdullahi et al. arXiv:2203.08039
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The coupling of HNLs with electron neutrinos can be searched for in  experiments0νββ
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One HNL

HNLs

Bolton, Deppish, Dev, JHEP 03 (2020)
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Leptogenesis

The HNLs decay into leptons generates a lepton asymmetry ( )N → Hl

ℒν
mass ⊃ YνL̄Lϕ̃NR +

1
2

MRN̄c
RNR + h . c .

ϵ =
Γ(N → lH) − Γ(N → lH†)

ΓN

Large CP-violation can be generated ( ) for very 
heavy masses  

ϵ ∼ 10−6

MR > (0.1eV/mν)1010GeV

PBH has got a lot interest in the recent year. It would be interesting to understand their interplay with leptogenesis.

Lepton asymmetry is transform to Baryon asymmetry via sphaleron 

Ivan Martinez-Soler (IPPP)

ηCMB = (6.23 ± 0.17) × 10−10

ηBBN = (6.08 ± 0.06) × 10−10
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PBH and Leptogenesis

Bernal, Fong, Perez-Gonzalez, Turner, PRD 106 (2022)

To obtain the baryon asymmetry, it was 
used ULYSSES

Granelli, Leslie, Perez-Gonzalez, Schulz, Shuve, Turner 
and Walker,  Comput.Phys.Commun, 191 (2023)
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Primordial Black Holes
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The neutrino burst can be observed by 
neutrino telescopes

Perez-Gonzalez, PRD 108 (2023)
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Neutrino Masses in Cosmology

Neutrino masses affect cosmological measurement through their free-streaming and their contribution to 
non-relativistic matter density at low redshift
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Adame et al (DESI), arXiv:2404.03002 
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Neutrino Masses in Cosmology

• Considering scenarios other than CDM, the 
tension with neutrino oscillations is reduced


• Time-varying equation of state for dark energy

Λ

Ivan Martinez-Soler (IPPP)
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Adame et al (DESI), arXiv:2404.03002 Elbers (DESI), Neutrino2024



Conclusions
• The discovery of the neutrino masses has raised new questions about how to explain them. 

• One option to explain neutrino masses is to add a right-handed neutrino, which allows for the possibility 
of Majorana neutrino masses. 


• Light values of this mass might leave an imprint on the astrophysical neutrino fluxes through oscillation 
between active and sterile states.


• Majorana masses on the GeV scale can be investigated in laboratory experiments such as beam dumps 
or neutrinoless double beta decay. 

• Such heavy states could be responsible for the baryon asymmetry observed in the universe.


• Cosmology is also sensitive to neutrino masses. Recent results are intension with neutrino oscillations, 
raising the question of whether this indicates BSM.
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